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UNIT - |
MATHEMATICAL LOGIC

Introduction:

Mathematical logic is the foundation of discrete mathematics, providing the rules and
language for reasoning about discrete objects like integers and propositions. It uses symbols
to represent statements and connectives to build compound statements, which are then
evaluated for their truth values to prove theorems and determine the validity of arguments.
Key areas include propositional logic (dealing with simple statements) and predicate logic,
and the study of logic underpins many computer science concepts such as algorithm design

and verification.

% It is the study of formal reasoning and how to prove mathematical statements.
¢ It provides the rules and techniques for determining if a statement is true or false, and
if an argument is valid.

¢ It establishes a theoretical basis for many areas of mathematics and computer science.

Statements and Notation:

In discrete mathematics, a statement (or proposition) is a declarative sentence that is
definitively either true or false. Notation is used to represent these statements and logical
relationships between them, using symbols for logical connectives (A,V,—,—, <),
quantifiers (V,3) and single letters to represent entire statements (P,Q,R). These are the
primary statements. Only those declarative sentences will be admitted in the object language
which have one and only one of two possible values called “truth values”. The two truth
values are true and false and are denoted by the symbols T and F respectively. Occasionaly
they are also denoted by the symbols 1 and 0. The truth values have nothing to do with our

feelings of the truth or falsity of these admissible sentences because these feelings are
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subjective and depend upon context. For our purpose, it is enough to assume that it is possible
to assign one and only one of the two possible values to a declarative sentence. We are
concerned in our study with the effect of assigning any particular truth value to declarative
sentences rather then with the actual truth value of these sentences. Since we admit only two

possible truth values, our logic is sometimes called a two-valued logic.

We develop a mechanism by which we can construct in our object language other
declarative sentences having one of the two possible truth values. Note that we
do not admit any other types of sentence, such as exclamatory, interrogative,
ete., in the object language.

Declarative sentences in the object language are of two types. The first
type includes those sentences which are considered to be primitive in the object
language. These will be denoted by distinct symbols selected from the capital
letters A, B, C, ..., P, Q, ..., while declarative sentences of the second type are
obtained from the primitive ones by using certain symbols, called connectives,
and certain punctuation marks, such as parentheses, to join primitive sentences.
In any case, all the declarative sentences to which it is possible to assign one
and only one of the two possible truth values are called stalements. These state-
ments which do not contain any of the connectives are called atomic (primary,
primilive) stalements.

We shall néw give examples of sentences and show why some of them are
not admissible in the object language and, hence, will not be symbolized.

Canada is a country.

Moscow is the capital of Spain.
This statement is false.

14 101 = 110.

Close the door.

Toronto is an old city.

Man will reach Mars by 1980.

N s W~

Obviously Statements (1) and (2) have truth values true and false respec-
tively. Statement (3) is not a statement according to our definition, because we:
cannot properly assign to it a definite truth value. If we assign the value true,
then Sentence (3) says that Statement (3) is false. On the other hand, if we:
assign it the value false, then Sentence (3) implies that Statement (3) is true.
This example illustrates a semantic paradox. In (4) we have a statement whose
truth value depends upon the context; viz., if we arc talking about numbers in
the decimal system, then it is a false statement. On the other hand, for numbers
in binary, it is a true statement. The truth value of a statement often depends
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upon its context, which is generally unstated but nonetheless understood. We
shall soon see that we are not going to be preoccupied with the actual truth value
of a statement. We shall be interested only in the fact that it has a truth value.
In this sense (4), (6), and (7) are all statements. Note that Statement (6) is
considered: true in some parts of the world and false in certain other parts. The
truth value of (7) could be determined only in the year 1980, or earlier if a man
reaches Mars before that date. But this aspect is not of interest to us. Note that
(5) is not a statement; it is a command.

Once we know those atomic statements which are admissible in the object
language, we can use symbols to denote them. Methods of constructing and
analyzing statements constructed from one or more atomic statements are dis-
cussed in Sec. 1-2, while the method of symbolizing atomic statements will be
described here after we discuss some conventions regarding the use and mention
of names in statements.

It is customary to use the name of an object, not the object itself, when
making a statement about the object. As an example, consider the statement

8 This table is big.

The expression ‘“‘this table” is used as a name of the object. The actual object,
namely a particular table, is not used in the statement. It would be inconvenient
to put the actual table in place of the expression ‘“this table.” Even for the case
of small objects, where it may be possible to insert the actual object in place of
its name, this practice would not permit us to make two simultaneous state-
ments about the same object without using its name at one place or the other.
For this reason it may be agreed that a statement about an object would contain
never the object itself but only its name. In fact, we are so familiar with this
convention that we take it for granted.

Consider, now, a situation in which we wish to discuss something about a
name, so that the name is the object about which a statement is to be made.
According to the rule just stated, we should use not the name itself in the state-
ment but some name of that name. How does one give a name to a name? A
usual method is to enclose the name in quotation marks and to treat it as a name
for the name. For example, let us look at the following two statements.

9 Clara is smart.
10 *“Clara’” contains five letters.

In (9) something is said about & person whose name is Clara. But Statement (10)
is not about a person but about a name. Thus “Clara’ is used as a name of this
name. By enclosing the name of a person in Guotation marks it is made clear
that the statement made in (10) is about a name and not about a person.

This convention can be explained alternatively by saying that we use a
certain word in a sentence when that word serves as the name of an object under
consideration. On the other hand, we mention a word in a sentence when that
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word is acting not as the name of an object but as the name of the word itself.
To “mention” a word means that the word itself has been converted into an
object of our consideration.

Throughout the text we shall be making statements not only about what
we normally consider objects but also about other statements. Thus it would be
necessary to name the statements under consideration. The same device used
for naming names could also be used for naming statements. A statement en-
closed in quotation marks will be used as the name of the statement. More gen-
erally, any expression enclosed in quotation marks will be used as the name of
that expression. In other words, any expression that is mentioned is placed in
quotation marks. The following statement illustrates the above discussion.

11 *“Clara is smart” contains “Clara.”

Statement (11) is a statement about Statement (9) and the word “Clara.”
Here Statement (9) was named first by enclosing it in quotation marks and then
by using this name in (11) along with the name “Clara”"!

In this discussion we have used certain other devices to name statements,
One such device is to display a statement on a line separated from the main
text. This method of display is assumed to have the same effect as that obtained

by using quotation marks to delimit a statement within the text. Further, we
have sometimes numbered these statements by inserting a number to the left
of the statement. In a later reference this number is used as a name of the state-
ment. This number is written within the text without quotation marks. Such a
display and the numbering of statements permit some reduction in the number of
quotation marks. Combinations of these different devices will be used throughout
the text in naming statements. Thus the statement

12 “Clara is smart”’ is true.
could be written as ‘“(9) is true,” or equivalently,
12a (9) is true.

A particular person or an object may have more than one name. [t is an
accepted principle that one may substitute for the name of an object in a given
statement any other name of the same object without altering the meaning of the
statement. This principle was used in Statements (12) and (12a).

We shall be using the name-forming devices just discussed to form the
names of statements. Very often such distinctions are not made in mathematical
writings, and generally the difference between the name and the object is as-
sumed to be clear from the context. However, this practice sometimes leads to
confusion.

A situation analogous to the name-object concept just discussed exists in
many programming languages. In particular, the distinction between the name
of a variable and its value is frequently required when a procedure (function or
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subroutine) is invoked (called). The arguments (also called actual parameters)
in the statement which invokes the procedure are associated with the (formal)
parameters of the procedure either by name or by value. If the association is
made by value, then only the value of an argument is passed to its corresponding
parameter. This procedure implies that we cannot change the value of the argu-
ment from within the function since it is not known where this argument is
stored in the computer memory. On the other hand, a call-by-name association
makes the name or address of the argument available to the procedure. Such
an association allows the value of an argument to be changed by instructions
in the procedure. We shall now discuss how call-by-name and call-by-value as-
sociations are made in a number of programming languages.

In certain versions of FORTRAN compilers (such as IBM’s FORTRAN H
and G) the name of an argument, not its value, is passed to a function or sub-
routine. This convention also applies to the case of an argument’s being a con-
stant. The address of a constant (stored in some symbol table of the compiler)
is passed to the corresponding parameter of the function. This process could lead
to catastrophic results. For example, consider the simple function FUN de-
scribed by the following sequence of statements:

INTEGER FUNCTION FUN(I)
I=5

FUN=I

RETURN

END

Suppose that the main program, which invokes FUN, consists of the trivial
statements

K=3

J = FUN(K) % 3
L = FUN(3) % 3
PRINT 10, J, L

10 FORMAT(1H , I3, 13)
STOP
END

This program yields values of 15 and 2o for variables J and L respectively. In
the evaluation of J, the address of K is known within the function. K is changed
in the function to a value of 5 by the statement I = 5. The functional value re-
turned by the function is 5, and a value of 15 for J results. The computation of
L, however, is quite different. The address of 3 is passed to the function. Since
the corresponding parameter I is changed to 5, the value of 3 in the symbol table
in the main program will also be changed to 5. Note that since all references to the
symbol table entry for constant 3 were made at compile time, all such future
references in the remainder of the main program still refer to that entry or loca-
tion, but the value will now be 5, not 3. More specifically, the name 3 in the right
operand of the multiplication of L has a value of 5.
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In other versions of FORTRAN compilers, such results are prevented by
creating a dummy variable for each argument that is a constant. These internal
(dummy) variables are not accessible to the programmer. A change in parameter
corresponding to a dummy variable changes the value of that variable, but it
does not change the value of the original argument from which it was constructed.

WATFIV permits the passing of arguments by value by merely enclosing
such arguments in slashes. For example, in the function call

TEST(1,/K/,5)

the value of K is passed to the function TEST.

In PL/I arguments can be passed by value or by name. An argument is
passed by value if it is enclosed within parentheses; otherwise it is passed by
name, In the function call

TEST(1,(K),5)

the arguments I and K are passed by name and by value respectively.

As mentioned earlier, we shall use the capital letters A, B, ..., P, Q, ...
(with the exception of T and F) as well as subscripted capital letters to represent
statements in symbolic logic. As an illustration, we write

18 P: It is raining today.

In Statement (13) we are including the information that “P” is a statement in
symbolic logic which corresponds to the statement in English, “It is raining
today.” This situation is similar to the translation of the same statement into
French as “Aujourd’hui il pleut.” Thus “P” in (13)—"It is raining today"’-—and
“Aujourd’hui il pleut” are the names of the same statement. Note that “P" and
not P is used as the name of a statement.

CONNECTIVES

The notions of a statement and of its truth value have already been introduced.
In the case of simple statements, their truth values are fairly obvious. However,
it is possible to construct rather complicated statements from simpler statements
by using certain connecting words or expressions known as “‘sentential connec-
tives.” Several such connectives are used in the English language. Because they
are used with a variety of meanings, it is necessary to define a set of connectives
with definite meanings. It is convenient to denote these new connectives by
means of symbols. We define these connectives in this section and then develop
methods to determine the truth values of statements that are formed by using
them. Various properties of these statements and some relationships between
them are also discussed. In addition, we show that the statements along with the
connectives define an algebra that satisfies a set of properties. These properties
enable us to do some calculations by using statements as objects. The algebra
developed here has interesting and important applications in the field of switching
theory and logical design of computers, as is shown in Sec. 1-2.15. Some of these
results are also used in the theory of inference discussed in Sec. 1-4.
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[he statements that we consider initially are simple statements, called
atomic or primary slalements. As already indicated, new statements can be formed
from atomic statements through the use ot sentential connectives. The resulting
statements are called molecular or compound statements. Thus the atomic state-
ments are those which do not have any connectives.

In our everyday language we use connectives such as “and,” “but,” “or
etc., to combine two or more statements to form other statements. However,
their use is not always precise and unambiguous. Therefore, we will not sym-
bolize these connectives in our object language; however, we will define connec-
tives which have some resemblance to the connectives in the English language.

The idea of using the capital letters P, Q, ..., Py, Py, ... to denote state-
ments was already introduced in Sec. 1-1. Now the same symbols, namely, the
capital letters with or without subscripts, will also be used to denote arbitrary
statements. In this sense, a statement “P” either denotes a particular statement
or serves as a placeholder for any statement whatsoever. This dual use of the
same symbol to denote either a definite statement, called a constant, or an arbi-
trary statement, called a variable, does not cause any confusion as its use will be
clear from the context. The truth value of “P” is the truth value of the actual
statement which it represents. It should be emphasized that when “P" is used as
a statement variable, it has no truth value and as such does not represent a state-
ment in symbolic logic. We understand that if it is to be replaced, then its re-
placement must be a statement. Then the truth value of P could be determined.
It is convenient to call “P” in this case a “statement formula.” We discuss the
notion of “statement formula” in Sec. 1-2.4. However, in the sections that follow,
we often abbreviate the term ‘“statement formula” simply by ‘“statement.”
This abbreviation keeps our discussion simple and emphasizes the meaning of
the connectives introduced.

As an illustration, let

n
'

P: It is raining today.
Q: It is snowing.

and let R be a statement variable whose possible replacements are P and Q. If
no replacement for R is specified, it remains a statement variable and has no
truth value. On the other hand, the truth values of P and Q can be determined
because they are statements.

Negation

The negation of a statement is generally formed by introducing the word “not”
at a proper place in the statement or by prefixing the statement with the phrase
“It is not the case that.” If “P” denotes a statement, then the negation of *‘P”
is written as “7|P" and read as ‘“not P.” If the truth value of “P" is T, then
the truth value of “|P" is F. Also if the truth value of “P" is F, then the truth
value of “71P" is T. This definition of the negation is summarized by Table 1-2.1,
Notice that we have not used the quotaticn marks to denote the names of

he statements in the table. This practice is in keeping with the one adopted
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earlier, when a statement was separated from the main text and written on a
separate line. From now on we shall drop the quotation marks even within the
text when we use symbolic names for the statements, except in the case where
this practice may lead to confusion. We now illustrate the formation of the nega-
tion of a statement,

(Consider the statement

P: London is a city.
Then 7P is the statement

—1P: It is not the case that London is a city.

Normally 7]P can be written as
T]P: London is not a city.

Although the two statements “It is not the case that London is a city” and
“London is not a city” are not identical, we have translated both of them by
T1P. The reason is that both these statements have the same meaning in English,
A given statement in the object language is denoted by a symbol, and it may
correspond to several statements in English. This multiplicity happens because
in a nutural language one can express onesell in a variety of ways,

A~ an illustration, if a statement is

£: I went to my class vesterday.
then 1715 any one of the following

i 1 did not go to my class vesterday.

Table 1-2.1 TRUTH TABLE FOR
NEGATION

P !

r v

2 1 was absent from my class yesterday.
8 It is not the case that I went to my class yesterday.

The symbol “7|"" has been used here to denote the negation. Alternate
symbols used in the literature are ““~,” a bar, or “NOT,"” so that "|P is written
as ~P, P, or NOT P. Note that a negation is called a connective although it only
modifies a statement. In this sense, negation is & unary operation which operates
on a single statement or a variable, The word “operation’ will be explained in
Chap. 2. For the present it is sufficient to note that an operation on statements
generates other statements. We have chosen 71" to denote negation because this
symbol is commonly used in the textbooks on logic and also in several program-
ming languages, one of which will be used here.
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Conjunction

The conjunction of two statements P and Q is'the statement P A Q which is read
as “P and Q.” The statement P A Q has the truth value T whenever both P
and Q have the truth value T; otherwise it has the truth value F. The conjunc-
tion is defined by Table 1-2.2,
EXAMPLE 1 Yorm the conjunction of
P: It is raining today.
Q: There are 20 tables in this room.
soLuTiOoN It is raining today and there are 20 tables in this room. ////
Normally, in our everyday language the conjunction “and” is used between
two statements which have some kind of relation. Thus a statement “It is raining

today and 2 + 2 = 4" sounds odd, but in logic it is a perfectly acceptable state-
ment formed from the statements “It is raining today” and “2 4+ 2 = 4.”

EXAMPLLE 2 Translate into symbolic form the statement
Jack and Jill went up the hill.

goLUTON In order to write it as a coujunction of twao statements, it is
necessary first to paraphrase the statement a-

Jack went up the hili apd Jili woenr an the hiil

Table 1.22 TRUTH TABLE FOR
CONJUNCTION

» 0 P Q
, T
L4 ’,'
I.
¢ ¢
If we now write
P: Jack went up the hill.

Q: Jill went up the hill,
then the given statement can be written in symbolic form as P A Q.

So far we have seen that the symbol A is used as a translation of the con-
nective “and” appearing in English. However, the connective “and" is sometimes
used in a different sense, and in such cases it cannot be translated by the symbol
A defined above. In order to see this difference, consider the statements:
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1 Roses are red and violets are blue.
2 He opened the book and started to read.
8 Jack and Jill are cousins.

In Statement (1) the conjunction “‘and” is used in the same sense as the symbol
A. In (2) the word “and” is used in the sense of “and then,” because the action
described in “‘he started to read” occurs after the action described in “he opened
the book.” In (3) the word “and” is not a conjunction. Note that our definition
of conjunction is symmetric as far as P and Q are concerned; that is to say, the
truth values of P A Q and of Q A P are the same for specific values of P and Q.
Obviously the truth value of (1) will not change if we write it as

Violets are blue and roses are red.

On the other hand, we cannot write (2) as
He started to read and opened the book.

These examples show that the symbol A has a specific meaning which corre-
sponds to the connective “‘and” in general, although “and” may also be used with
some other meanings. Some authors use the symbol &, or a dot, or “AND” to
denote the conjunction. Note that the conjunction is a binary operation in the
sense that it connects two statements to form a new statement.

Disjunction

The disjunction of two statements P and Q is the statement P V Q which is read
as “P or Q.” The statement P V Q has the truth value F only when both P and
Q have the truth value F; otherwise it is true. The disjunction is defined by
Table 1-2.3.

Table 1-23 TRUTH TABLE FOR

DISJUNCTION
P Q PVQ
T T / o
T F T
F T T
F F F

The connectives ~ | and A defined earlier have the same meaning as the words
“not” and “and” in general. However, the connective V is not always the same
as the word “or” because of the fact that the word “or” in English is commonly
used both as an “‘exclusive OR” and as an “inclusive OR.” For example, consider
the following statements:

1 1 shall watch the game on television or go to the game.
£ There is something wrong with the bulb or with the wiring.
8 Twenty or thirty animals were killed in the fire today.
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In Statement (1), the connective ‘“or” is used in the exclusive sense; that
is to say, one or the other possibility exists but not both. In (2) the intended
meaning is clearly one or the other or both. The connective “or” used in (2) is
the “inclusive OR.” In (3) the “or” is used for indicating an approximate num-
ber of animals, and it is not used as a connective.

From the definition of disjunction it is clear that V is “inclusive OR.” The
symbol V comes from the Latin word ‘“vel” which is the “inclusive OR.” It is
not necessary to introduce & new symbol for “‘exclusive OR,” since there are
other ways to express it in terms of the symbols already defined. We demonstrate
this point in Sec. 1-2.14.

Normally in our everyday language, the disjunction ‘“or”’ is used between
two statements which have some kind of relationship between them. It is not
necessary in logic that there be any relationship between them according to the
definition of disjunction. The truth value of P V Q depends only upon the truth
values of P and Q. As before, it may be necessary to paraphrase given statements
in English before they can be translated into symbolic form. Similarly, transla-
tions of statements from symbolic logic into statements in English may require
paraphrasing in order to make them grammatically acceptable.

Statement Formulas and Truth Tables

We have defined the connectives ~|, A, and V so far. Other connectives will be
defined subsequently. We shall occasionally distinguish between two types of
statements in our symbolic language. Those statements which do not contain
any connectives are called atomic or primary or simple statements. On the other
hand, those statements which contain one or more primary statements and some
connectives are called molecular or composite or compound stalements. As an ex-
ample, let P and Q be any two statements. Some of the compound statements
formed by using P and Q are

P PV (PAQ V(P PA(TIR) (1)

The compound statements given above are statement formulas derived from the
statement variables P and Q. Therefore, P and Q may be called the components
of the statement formulas. Observe that in addition to the connectives we have
also used parentheses in some cases in order to make the formula unambiguous.
We discuss the rules of constructing statement formulas in Sec. 1-2.7,

Recall that a statement formula has no truth value. It is only when the
statement variables in a formula are replaced by definite statements that we get
a statement. This statement has a truth value which depends upon the truth
values of the statements used in replacing the variables.

In the construction of formulas, the parentheses will be used in the same
sense in which they are used in elementary arithmetic or algebra or sometimes
in a computer programming language. This usage means that the expressions
in the innermost parentheses are simplified first. With this convention in mind,
P A Q) means the negation of P A Q. Similarly (P A Q) V (Q A R) means
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the disjunction of PAQ and Q A R. ((P A Q) V R) A (T1P) means the
conjunction of "|P and (P A Q) V R, while (P A Q) V R means the disjunc-
tion of P A Q and R.

In order to reduce the number of parentheses, we will assume that the nega-
tion affects as little as possible of what follows. Thus ~|P Vv Q is written for
(T1P) V Q, and the negation means the negation of the statement immediately
following the symbol ~|. On the other hand, according to our convention,
(P A Q) V R stands for the disjunction of "|(P A Q) and R. The negation
affects P A Q but not R.

Truth tables have already been introduced in the definitions of the connec-
tives. Our basic concern is to determine the truth value of a statement formula
for each possible combination of the truth values of the component statements.
A table showing all such truth values is called the truth table of the formula. In
Table 1-2.1 we constructed the truth table for 7|P. There is only one component
or atomic statement, namely P, and so there are only two possible truth values
to be considered. Thus Table 1-2.1 has only two rows. In Tables 1-2.2 and 1-2.3
we constructed truth tables for P A Q and P V Q respectively. These statement
formulas have two component statements, namely P and Q, and there are 2* pos-
sible combinations of truth values that must be considered. Thus each of the two
tables has 22 rows. In general, if there are n distinet components in a statement
formula, we need to consider 2" possible combinations of truth values in order
to obtain the truth table.

Two methods of constructing truth tables are shown in the following
examples.

EXAMPLE 1 Construct the truth table for the statement formula P vV 7)Q.
soLUTION It is necessary to consider all possible truth values of P and Q.

These values are entered in the first two columns of Table 1-2.4 for both methods.
In the table which is arrived at by method 1, the truth values of ~|Q are entered

Table 1-2.4a

P Q 1@ PVTIO

y T F T

T F T ) i

F r F F

F F - T
Method 1
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Table 1-2.4b

P Q P V 1 Q
T T T T F T
T F T T T F
F T F F F T
F F F 7 T F
Step

Number 1 3 2 1

Method 2

in the third column, and the truth values of P V 7|Q are entered in the fourth
column. In method 2, as given in Table 1-2.4b, a column is drawn for each state-
ment as well as for the connectives that appear. The truth values are entered
step by step. The step numbers at the bottom of the table show the sequence
followed in arriving at the final step. i

EXAMPLE 2 Construct the truth table for P A T \P.

soLuTioN See Table 1-2.5. Note that the truth value is F for every pos-
gsible truth value of P. In this special case, the truth value of P A ~|P is inde-
pendent of the truth value of P, /1l/

EXAMPLE 3 Construct the truth table for (P VvV Q) VvV T|P.

soLUuTION See Table 1-2.6. In this case the truth value of the formula
(P v Q) V T|Pisindependent of the truth values of P and Q. This independence
is due to the special construction of the formula, as we shall see in Sec. 1-2.8.

Table 1-2.5

P N ' 4 PA TP
T F
' 4 T

Y

Method 1
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P P A | P
T T F F T
F F F T F
Step
Num-
ber 1 3 2 1
Method 2
Table 1-2.6
P Q PVQ P (PVQ)V P
T T T F T
T F T F /o
F T T T T
F F F T T
Method 1
P Q r \J Q) \% § P
T T T T T T F T
T F T T F T F T
F T F T T T T F
F F F F F T T F
Step
Number 1 2 1 3 2 1
Method 2

Observe that if the truth values of the component statements are known,
then the truth value of the resulting statement can be readily determined from
the trutn table by reading along the row which corresponds to the correct truth
values of the component statements.

EXERCISES 1-24

1 Using the statements
R: Mark is rich.
H: Mark is happy.

write the following statements 1n symbolic form:
(a) Mark is poor but happy.

() Mark is rich or unhappy.

(¢) Mark is neither rich nor happy.

(d) Mark is poor or he is both rich and unhappy.
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2 Construct the truth tables for the following formulas.
(a) T1(1PV TIQ)
(b) "1T1IPATIQ)
(e) PA(PVQ)
(d) PAQAP)
(e) TIPACIRARIV QAR VI(PAR)
(NPAQOVIIPAQVIPATIQOOVITIPATIQ)

8 For what truth values will the following statement be true? “It is not the case that
houses are cold or haunted and it s false that cottages are warm or houses ugly.”
(Hint: There are four atomic statements. )

4 Given the truth values of P and Q as 7' and those of R and S as F, find the truth values
of the follrwing:

(a) PV (QAR)
B (PAQAR)VTIIPVQ ARV S))
(e) CHPAQVTIRIVITIPAQ VIR A S)

Conditional and Biconditional

If P and Q are any two statements, then the statement P — Q which is read
as “If P, then Q" is called a conditional statement. The statement P — Q has
a truth value F when Q has the truth value F and P the truth value T'; otherwise
it has the truth value 7. The conditional is defined by Table 1-2.8.

The statement P is called the antecedent and Q the consequent in P — Q.
Again, according to the definition, it is not necessary that there be any kind of
relation between P and Q in order to form P — Q.

Table 1.2.8 TRUTH TABLE FOR

CONDITIONAL
P Q P—-Q
T T T
T F F
F T T
F F T

EXAMPLE 1 Express in English the statement P — Q where
P: The sun is shining today.
Q:2+4+7>4.
soLuTioN If the sun is shining today, then 2 4 7 > 4.

The conditional often appears very confusing to a beginner, particularly
when one tries to translate a conditional in English into symbolic form. A variety
of expressions are used in English which can be appropriately translated by the
symbol —. It is customary to represent any one of the following expressions by
P—Q:
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Q is necessary for P.
P is sufficient for Q.
Qif P.

P only if Q.

P implies Q.

We shall avoid the translation “implies.” Although, in mathematics, the
statements “If P, then Q" and “P implies "’ are used interchangeably, we want
to use the word “implies” in a different way.

In our everyday language, we use the conditional statements in a more
restricted sense. It is customary to assume some kind of relationship or implica-
tion or feeling of cause and effect between the antecedent and the consequent in
using the conditional. For example, the statement “If I get the book, then I shall
read it tonight’’ sounds reasonable because the second statement “I shall read it
(the book) tonight” refers to the book mentioned in the first part of the state-
ment. On the other hand, a statement such as “If I get the book, then this room
is red”’ does not make sense to us in our conventional language. However, ac-
cording to our definition of the conditional, the last statement is perfectly ac-
ceptable and has a truth value which depends on the truth values of the two
statements being connected.

The first two entries in Table 1-2.8 are similar to what we would expect
in our everyday language. Thus, if P is true and Q is true, then P — Q is true.
Similarly, if P is true and Q is false, then “If P, then Q"' appears to be false. Con-
sider, for example, the statement ‘“If I get the money, then I shall buy the car.”
If T actually get the money and buy the car, then the statement appears to be
correct or true. On the other hand, if I do not buy the car even though I get
the money, then the statement is false. Normally, when a conditional statement
is made, we assume that the antecedent is true. Because of this convention in
English, the first two entries in the truth table do not appear strange. Referring
to the above statement again, if I do not get the money and I still buy the car,
it is not so clear whether the statement made earlier is true or false. Also, if I
do not buy the car and I do not get the money, then it is not intuitively clear
whether the statement made is true or false, It may be possible to justify entries
in the last two rows of the truth table by considering special examples or even by
emphasizing certain aspects of the statements given in the above examples. How-
ever, it is best to consider Table 1-2.8 as the definition of the conditional in which
the entries in the last two rows are arbitrarily assigned in order to avoid any am-

Or ¥~ CQ 29 ™~

biguity. Any other choice for the last two entries would correspond to some other
connective which has either been defined or will be defined. In general, the use
of “If ..., then ...” in English has only partial resemblance to the use of the
conditional — as defined here.

EXAMPLE 2 Write the following statement in symbolic form.

If either Jerry takes Caleulus or Ken takes Sociology,
then Larrv will take English.
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soLUuTION Denoting the statements as

J: Jerry takes Caleulus.
K: Ken takes Sociology.
L: Larry takes English.
the above statement can be symbolized as
(JVK)—L
EXAMPLE 3 Write in symbolie form the statement
The erop will be destroved if there is a flood.
soLuTioN Let the statements be denoted as
(": The erop will be destroved.

F: There is a flood,
Note that the given statement uses “if”” in the sense of “If ..., then (L7 s
better to rewrite the given statement as “If there is a flood, then the erop will
be destroyed.” Now it is easy to symbolize it as

F-=C /11/
EXAMPLE 4 Construet the truth table for (17 = Q) A (Q — I’).
soLuTioN See Table 1-2.9. Note that the given formula has the truth

value 7" whenever both P and Q have identical truth values, 111/

If P and Q are any two stutements, then the statement 22 & Q, which is
read as “/’ if and only if Q" and abbreviated as “7iff Q," iz called a biconditional
statement. The statement /7 &= Q has the truth value 7 whenever both /2 and

Table 1.2.9

P 0Q P—+Q Q—P P—-QA@Q@—P
r P T v 4

T F ¥ ' & F

F T T r F

F F T T T
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Table 1-2.10 TRUTH TABLE FOR

BICONDITIONAL
& Q P20
T T T
T F F
F T F
F F T

VI WPAQE (TPVIIQ)

w e w
F F F
F T T
T F T
T T T

e Be Bo B |

Q have identical truth values. Table 1-2.10 defines the biconditional. The state-
ment P & Q is also translated as “P is necessary and sufficient for Q.”” Note that
the truth values of (P — Q) A (Q — P) given in Table 1-2.9 are identical to the
truth values of P =2 Q defined here.

EXAMPLE 5 Construct the truth table for the formula
THPAQ =PV IR
soLuTION See Table 1-2.11. Note that the truth values of the given for-

mula are T for all possible truth values of P and Q. /1/]

EXERCISES 1-2.6

! Show that the truth values of the foliowing formulas are independent of their com-
ponents.

(a) (PA (P—Q))—Q

%) (P—=Q=(1PVQ

(e) (P—Q A (Q—R))—(P—R)

(@) (P2Q=((PAQV(IPATIQ)

2 Construct the truth tables of the following formulas.
(a) (QA (P—Q)—P
® PV QAR)=((PVQ A (PVR))

8 A connective denoted by V/ is defined by Table 1-2.12, Find & formula using P, Q, and
thoveonnectim A, V, and | whose truth values are identical to the truth values of
PV Q.

4 Given the truth values of P and Q as T and those of R and S as F, find the truth values
of the following:

(@) CHPAQVTIR)V ((Qe71P)— (RVT]S))
®) (P2R)ACIR—S)
() (PV(Q—=(RATIP))=(QV IS
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Table 1.2.12

P Q PVQ
T T F
T F T
F T T
F F F

Well-formed Formulas

The notion of a statement formula has already been introduced. A statement
formula is not a statement (although, for the sake of brevity, we have often
called it a statement) ; however, a statement can be obtained from it by replacing
the variables by statements. A stalement formula is an expression which is a string
consisting of variables (capital letters with or without subseripts), parentheses,
and connective symbols. Not every string of these symbols is a formula. We shall
now give a recursive definition of a statement formula, often called a well-formed
formula (wff). A well-formed formula can be generated by the following rules:

1 A statement variable standing alone is a well-formed formula.

2 If A is a well-formed formula, then A is a well-formed formula.

8 1If A ard B are well-formed formulas, then (A A B), (A V B), (4 — B),
and (A = B) are well-formed formulas.

4 A string of symbols containing the statement variables, connectives,
and parentheses is a well-formed formula, iff it can be obtained by finitely many
applications of the rules 1, 2, and 3.

According to this definition, the following are well-formed formulas:
WP AQ HUP VQ) (P—=(PVQ)) (P—(Q—R))
((P—=Q) A(Q—R))=(P—R))
The following are not well-formed formulas.

1 TP A Q. Obviously P and Q are well-formed formulas. A wfl would
be either (TP A Q) or " (P A Q).

2 (P—Q)— (A Q). This is not a wif because A Q is not.

3 (P —Q. Note that (P — Q) is a wif.

4 (P AQ)— Q). The reason for this not being a wff is that one of the pa-
rentheses in the beginning is missing. ((P A Q) — Q) isa wif, while (P A Q) —Q
is still not a wil,

It is possible to introduce some conventions so that the number of paren-
theses used can be reduced. In fact, there are conventions which, when followed,
allow one to dispense with all the parentheses. We shall not discuss these conven-
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tions here. For the sake of convenience we shall omit the outer parentheses. Thus
wewrite P A Qinplaceof (P A Q), (P A Q) —Qinplace of ((PA Q) —Q),
and ((P—=Q) A (Q—R)) = (P —R)instead of (((P—=Q) A (Q—R)) =
(P — R)). Since the only formulas we will encounter are well-formed formulas,
we will refer to well-formed formulas as formulas.

Tautologies

Well-formed formulas have been defined. We also know how to construct the
truth table of a given formula. Let us consider what a truth table represents. If
definite statements are substituted for the variables in a formula, there results
a statement. The truth value of this resulting statement depends upon the truth
values of the statements substituted for the variables. Such a truth value appears
as one of the entries in the final column of the truth table. Observe that this
entry will not change even if any of the definite statements that replace particular
variables are themselves replaced by other statements, as long as the truth values
associated with all variables are unchanged. In other words, an entry in the final
column depends only on the truth values of the statements assigned to the vari-
ables rather than on the statements themselves. Different rows correspond to
different sets of truth value assignments. A truth table is therefore a summary
of the truth values of the resulting statements for all possible assignments of
values to the variables appearing in a formula. It must be emphasized that a
statemen* formula does not have a truth value. In our discussion which follows
we shall, for the sake of simplicity, use the expression “the truth value of a state-
ment formula’ to mean the entries in the final column of the truth table of the
formula.

In general, the final column of a truth table of a given formula contains
both T and F. There are some formulas whose truth values are always T or
always F regardless of the truth value assignments to the variables. This situ-
ation occurs because of the special construction of these formulas. We have
already seen some examples of such formulas.

Consider, for example, the statement formulas PV " |Pand P A " |P in
Table 1-2.13. The truth values of P Vv "|P and P A " |P, which are T and F
respectively, are independent of the statement by which the variable P may be
replaced.

A statement formula which is true regardless of the truth values of the
statements which replace the variables in it is called a universally valid formula
or a tautology or a logical truth. A statement formula which is false regardless of
the truth values of the statements which replace the variables in it is called a
conlradiction. Obviously, the negation of a contradiction is a tautology. We may
say that a statement formula which is a tautology is identically true and a formula
which is a contradiction is tdentically false.

A straightforward method to determine whether a given formula is a
tautology is to construct its truth table. This process can always be used but
often becomes tedious, particularly when the number of distinet variables is
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large or when the formula is complicated. Recall that the numbers of rows in a
truth table is 2*, where n is the number of distinet variables in the formula. Later,

Table 1-2.13

P 23 P\V P PA TP

- F T F
F T T F

alternative methods will be developed that will be able to determine whether
a statement formula is a tautology without having to construct its truth table.

A simple fact about tautologies is that the conjunction of two tautologies
is also a tautology. Let us denote by A and B two statement formulas which are
tautologies. If we assign any truth values to the variables of A and B, then the
truth values of both A and B will be T. Thus the truth value of A A B will be
T, so that A A B will be a tautology.

A formula A is called a substitution instance of another formula B if A can
be obtained from B by substituting formulas for some variables of B, with the
condition that the same formula is substituted for the same variable each time
it occurs. We now illustrate this concept. Let

B:P— (J A°P)
Substitute R = S for P in B, and we get
A: (R28) - J A (R=1S8))
Then A is a substitution instance of B. Note that
(Re28)—((J AP)

is not a substitution instance of B because the variable P inJ A P was not re-
placed by R = 8. It is possible to substitute more than one variable by other
formulas, provided that all substitutions are considered to occur simultaneously.
For example, substitution instances of P — ~|Q are

1 (RATIS)-"1J VM)
2 (RATIS)="HRATIS)
8 (RA1S)—-"P

4 Q—="1PATIQ

In (2) both P and Q have been replaced by R A 71S. In (4), P is replaced by
Qand Qby P A T1Q.
Next, consider the following formulas which result from P — 7]Q.

1 Substitute P V Q for P and R for Q to get the substitution instance
(PV Q) — IR
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2 VFirst substitute P vV Q@ for P to obtain the substitution instance
(P V Q) — 71Q. Next, substitute R for Q in (P V Q) — 71Q, and we get
(P V R) — "|R. This formula is a substitution instance of (P V Q) — 71Q,
but it is not a substitution instance of P — ~]Q under the substitution (P V Q)
for P and R for Q. This statement is true because we did not .ubstitute simul-
taneously as we did in (1).

It may be noted that in constructing substitution instances of a formuls,
substitutions are made for the atomic formula and never for the molecular for-
mula. Thus P — Q is not a substitution instance of P — ~|R, because it is R
which must be replaced and not "|R.

The importance of the above concept lies in the fact that any substitution
instance of a tautology is a tautology. Consider the tautology P V ~|P. Regard-
less of what is substituted for P, the truth value of P V T |P is always T. There-
fore, it we substitute any statement formula for P, the resulting formula will be

a tautology. Hence the following substitution instances of P V T |P are tau-
tologies.
(R—=8S)V I(R—S8)

((PVS)AR)VTI(PVS) AR)
((FVTIR)—=R)=8) VPV TIQ) —R)=8)

Thus, if it is possible to detect whether a given formula is a substitution
instance of a tautology, then it is immediately known that the given formula is
also a tautology. Similarly, one can start with a tautology and write a large
number of formulas which are substitution instances of this tautology and hence
are themselves tautologies.

EXERCISES 1-2.8

I From the formulas given below select those which are well-formed according to the
definition in Sec. 1-2.7, and indicate which ones are tautologies or contradictions.
(a) (P—(PVQ))

(d) ((P—(T]P))—"1P)

(e) ((TIQRA P)A Q)

(d) (P (Q—R))—=((P—Q)— (P—R)))
(e) ((C1P—Q)—(Q—P)))

(f) (PAQ)&=P)

2 Produce the substitution instances of the following formulas for the given substitutions.
(a) (((P—Q)— P)— P); substitute (P— Q) for Pand ((P A Q) — R) for Q.
(b) ((P—Q)— (Q— P)); substitute Q for P and (P A " |P) for Q.

8 Determine the formulas which are substitution instances of other formulas in the list
and give the substitutions,

(a) (P—(Q— P))

() (((P—=Q A(R—=S)AN(PVR)—(QVS))
(¢) (Q— ((P—P)—Q))

(d) (P— ((P—(Q—P))—P))

(e) ((((R—>S)A(Q—P))A(RVQ))—(SV P))
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UNIT -1
NORMAL FORMS

Let A(Py, Py, ..., P,) be a statement formula where Py, Py, ..., P, are the
atomic variables. If we consider all possible assignments of the truth values to
Py, Py, ..., P, and obtain the resulting truth values of the formula A, then we
get the truth table for A, Such a truth table contains 2* rows. The formula may
have the truth value T for all possible assignments of the truth values to the
variables Py, Py, ..., P.. In this case, A is said to be identically true, or a tau-
tology. If A has the truth value F for all possible assignments of the truth values
to Py, Py, ..., P,, then A is said to be identically false, or a contradiction. Finally,
if A has the truth value T for at least one combination of truth values assigned
tOP), Pa, coey P.., then A issaidwbeaaluﬁabk.

The problem of determining, in a finite number of steps, whether a given
statement formula is a tautology or a contradiction or at least satisfiable is known
as a decision problem. Obviously, the construction of truth tables involves a finite
number of steps, and, as such, a decision problem in the statement calculus
always has a solution. Similarly, decision problems can be posed for other logical
systems, particularly for the predicate calculus. However, in the latter case, the
solution of the decision problem may not be simple.

As was mentioned earlier, the construction of truth tables may not be
practical, even with the aid of a computer. We therefore consider other pro-
cedures known as reduction to normal forms.

Disjunctive Normal Forms

It will be convenient to use the word “product” in place of “conjunction’ and
“sum” in place of “disjunction” in our current discussion.

A product of the variables and their negations in a formula is called an
elemenlgry product. Similarly, a sum of the variables and their negations is called
an elementary sum.

Let P and Q be any two atomic variables. Then P, 7IP A Q, 1R A P A

1P, P A T\P,and Q A TP are some examples of elementary products. On the
otherhand, P, 1PV Q," IRV PV TIP,PV T\|P,and Q V T|P are examples
of elementary sums of the two variables. Any part of an elementary sum or
product which is itself an elementary sum or product is called a faclor of the
original elementary sum or product. Thus 71Q, P A "|P, and 7|Q A P are
some of the factors of 71Q A P A T1P. The following statements hold for ele-
mentary sums and products.

A necessary and sufficient condition for an elementary product to be iden-
tically false is that it contain at least one pair of factors in which one is the
negation of the other.
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A necessary and su fficient condition for an elementary sum to be identically
true is that it contain at least one pair of factors in which one is the nega-
tion of the other.

We shall now prove the first of these two statements. The proof of the
second will follow along the same lines.

We know that for any variable P, P A 7P is identically false. Hence if
P A TP appears in the elementary product, then the produet is identically
false. On the other hand, if an elementary produet is identically false and does not
contain at least one factor of this type, then we can assign truth values T and F
to variables and negated variables, respectively, that appear in the product. This
assignment would mean that the elementary product has the truth value 7'. But
that statement is contrary to our assumption. Hence the statement follows.

A formula which is equivalent to a given formula and which consists of
a sum of elementary products is called a disjunctive normal form of the given
formula.

We shall first discuss a procedure by which one can obtain a disjunctive
normal form of a given formula. It has already been shown that if the connectives
— and £ appear in the given formula, then an equivalent formula can be ob-
tained in which “—" and “&"" are replaced by A, V, and 7). This statement
would be true of any other connective yet undefined. The truth of this statement
will become apparent after our discussion of prineipal disjunctive normal forms.
Therefore, there is no loss of generality in assuming that the given formula con-
tains the connectives A, V, and | only.

If the negation is applied to the formula or to a part of the formula and
not to the variables appearing in it, then by using De Morgan’s laws an equiv-
alent formula can be obtained in which the negation is applied to the variables
only. After this step, the formula obtained may still fail to be in disjunctive nor-
mal form because there may be some parts of it which are products of sums. By
repeated application of the distributive laws we obtain the required normal form.

EXAMPLE 1 Obtain disjunctive normal forms of (a) P A (P — Q); (b)
TPV 2P AQ).

SOLUTION

(@) PA(P=Q&oPA(IPVQ=(PATIP)V(PAQ
) TPV =(PAQ)

SCIPVAARPAQ) VPV ATIHPAQ))

[usingR=28= (RAS)V (TIRATIS)]
S(IPATIRAPAQ VPV APV TIQ)
S(CIPATIRAPAQ V ((PVQ) ATIP)

VPV ATIQ
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ST PATIRAPAQ V(PATIP)V (QATIP)

VIPATIQ)V(QATIQ
which is the required disjunctive normal form.

The disjunctive normal form of a given formula is not unique. In fact,
different disjunctive normal forms can be obtained for a given formula if the dis-
tributive laws are applied in different ways. Apart from this fact, the factors in
each elementary product, as well as the factors in the sum, can be commuted.
However, we shall not consider as distinct the various disjunctive normal forms
obtained by reordering the factors either in the elementary products or in the
sums.
Consider the formula F V (Q A R). Here the formula is already in the
disjunctive normal form. However, we may write

PV QAR)=(PVQAN(PVR)=(PANP)
VIPAQ V((PAR)V(QAR)

the last equivalent formula being another equivalent disjunctive normal form.
Of course, different disjunctive normal forms of the same formula are equivalent.
In order to arrive at a unique normal form of a given formula, we introduce the
principal disjunctive normal form in Seec. 1-3.3.

Finally, we remark that a given formula is identically false if every ele-
mentary product appearing in its disjunctive normal form is identically false.
For the assumption to be true, every elementary product would have to have
at least two factors, of which one is the negation of the other.

Conjunctive Normal Forms

A formula which is equivalent to a given formula and which consists of a product
of elementary sums is called a conjunctive normal form of the given formula.

The method for obtaining a conjunctive normal form of a given formula
is similar to the one given for disjunctive normal forms and will be demonstrated
by examples. Again, the conjunctive normal form is not unique. Furthermore,
a given formula is identically true if everv elementary sum in its conjunctive
norma! form is identically true. This would be the case if every elementary sum
appeanng in the formula had at least two factors, of which one is the negation
of the other.

EXAMPLE 1  Obtain a conjunctive normal form of each of the formulas given
in Exawple 1 of See. 1-3.1.

SOLUTION

(@) PA(P=Q)=PA (TIPVQ).HenceP A (TP V Q) isa required form.
® NPV R2(PAQe(TIPVQ—=(PAQ)A((PAQ)
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- 1(PVQ)
[usingR=2Se (R—8) A (S—R)]
S((PVQVPAQ)AN(TIPAQ)
vV (T1P A TIQ))

= ((PVQVP)A(PVRVQ)
APV TIQ V(1P ATIQY)

< (PVQVP)APVQVQ
ACIPVTIRVTIP)ACIPVTIRYV TIQ)
/111

EXAMPLE 2 Show that the formulaQ V (P A T1Q) V (TI1P A T1Q) isa
tautology.

soLuTION First we obtain a conjunctive normal form of the given formula.

QVIPATIQOVIOPATIQQ=QV ((PV TIP) A TIQ)
SQVEPVTIP)ARQY TIQ)
= QVPVTIP)AQVTIQ)

Since each of the elementary sums is a tautology, the given formula is a tau-
tology. /11/

1-3.3 Principal Disjunctive Normal Forms

Let P and Q be two statement variables. Let us construct all possible formulas
which consist of conjunctions of P or its negation and conjunctions of Q or its
negation. None of the formulas should contain both a variable and its negation.
Furthermore, any formula which is obtained by commuting th~ formulas in the
conjunction is not included in the list because such a formula will be equivalent
to one included in the list. For example, either P A Q or Q A P is included, but
not both. For two variables P and Q, there are 2% such formulas given by

PAQ PATIQ T1FAQ and TIPATIQ

These formulas are called minterms or Boolean conjunctions of P and Q. From
the truth tables of these minterms, it is clear that no two minterms are equiv-
alent. Each minterm has the truth value T for exactly one combination of the
truth values of the variables P and Q. This fact is shown in Table 1-3.1.

We assert that if the truth table of any formula containing only the vari-
ables P and Q is known, then one can easily obtain an equivalent formula which
consists of a disjunction of some of the minterms. This statement is demonstrated
as follows,

For every truth value T in the truth table of the given formula, select the
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Table 1-3.1

Q PAQ PA T1Q PAQ WPATQ

NN Y
wNTN
T
MW
mNYY
R

minterm which also has the valve 7 for the same combination of the truth values
of P and Q. The disjunction of these minterms will then be equivalent to the
given formula.

This discussion provides the basis for a proof that a formula containing
any connective is equivalent to a formula containing A, V, and 7).

For a given formula, an equivalent formula consisting of disjunctions of
minterms only is known as its principal disjunctive normal form. Such a normal
form is also called the sum-of-products canonical form.

EXAMPLE 1 The truth tables for P — Q, P v Q, and "1(P A Q) are given
in Table 1-3.2. Obtain the principal disjunctive normal forms of these formulas.

SOLUTION

PoQe(PAQVIPAQ VITIPATIQ
PVRQea(PAQ V(IPATIQOVIIPAQ
TTMPAQ®(PATIROV(TIPAQ V (TIPATIQ) /117

Note that the number of minterms appearing in the normal form is the
same as the number of entries with the truth value 7' in the truth table of the
given formula. Thus every formula which is not a contradiction has an equiv-
alent principal disjunctive normal form. Further, such a normal form is unique,
except for the rearrangements of the factors in the disjunctions as well as in each
of the minterms. One can get a unique normal form by imposing a certain order
in which the variables appear in the minterms as well as a definite order in which
the minterms appear in the disjunction. In that case, if two given formulas are
equivalent, then both of them must have identical principal disjunctive normal
forms. Therefore, if we can devise a method other than the construction of truth
tables to obtain the principal disjunctive normal form of a given formula, then
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Table 1-3.2

P—Q PVQ WPA Q)

o Be B B B B

MNNN | O
e e

b B B B

o B B [

the same method can be used to determine whether two given formulas are
equivalent. s

Although our discussion of the principal disjunctive normal form was re-
stricted to formulas containing only two variables, it is possible to define the
minterms for three or more variables. Minterms for the three variables P, Q,
and R are

PAQAR PAQA IR PATIQAR PATIQA IR
“IPAQAR “IPAQA IR IPATIQAR “IPATIQATIR

These iminterms satisfy properties similar to those given for two variables. An
equivalent principal disjunctive normal form of any formula which depends upon
the variables P, Q, and R can be obtained. Note that there are 2* minterms for
three variables or, more generally, 2* minterms for n variables. For any formula
containing n variables which are denoted by Py, Py, ..., P,, an equivalent dis-
junctive normal form can be obtained by selecting appropriate minterms out of
the set of 2* possible minterms.

If a formula is & tautology, then obviously all the minterms appear in its
principal disjunctive normal form; it is also possible to determine whether a
given formula is a tautology by obtaining its principal disjunctive normal form.

In order to obtain the principal disjunctive normal form of a given formula
without constructing its truth table, one may first replace the conditionals and
biconditionals by their equivalent formulas containing only A, V, and 7. Next,
the negations are applied to the variables by using De Morgan’s laws followed
by the application of distributive laws, as was done earlier in obtaining the dis-
junctive or conjunctive normal forms. Any elementary product which is a con-
tradiction is dropped. Minterms are obtained in the disjunctions by introducing
the missing factors. Identical minterms appearing in the disjunctions are de-
leted. This procedure is demonstrated by means of examples.

EXAMPLE 2 Obtain the principal disjunctive normal forms of (a) “ 1P V @Q;
B) (PAQ V(TIPAR)V (QAR).

SOLUTION
(@) TIPVR=(TIPAQVTIQ) VQA(PVTIP)
(AANTeA)
S(CIPAQVIIPATIROVE@AP)VQRATIP
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(distributive laws)

S(CIPAQV(IPATIR)V(PAQ

(commutative law and P V P « P)
(See Example 1.)

B (PAQV(IPAR)V(QAR)
SPAQARVTIR)V(IPARA (QVTIQ)
VQARAN PV TIP)
S (PAQAR)V(PAQATIR)V(TIPAQAR)
VIPATIQAR) i

EXAMPLE 3 Show that the following are equivalent formulas.

(a) PV(IPAQ) &P
) PV(IPAQ &PVQ

soLuTioN We write the principal disjunctive normal form of each formula
and compare these normal forms,

(@) PVIPAQ=PAQRVTIVIPAQ=MFPAQVIPATI
PoaPAQV Qe PAQV(PATIQ
O PVCIPAQ&PARRVTINDV(TIPAQ
SPAQVIPATIRV (TIPAQ)
PVQe(PA@QVTIR)VQAPYVTIP)
SPAQVIPATIQV(IPAQ) /1]

EXAMPLE 4 Obtain the principal digjunctive normal form of
P=>((P=Q) ARV TIP)
soLuTioN Using P — Q & 7 |P V Q and De Morgan’s law, we obtain
P=((P-Q ARV TIP))

S IPV(((TIPVQ AQAP))

S 1PV IPAQAP))VIQAQAP)

=PV (QAP)

S(CIPARQRVTIQ)V QAP

SCIPAQVITIPATIR)VIPAQ) /117

The procedure described above becomes tedious if the given formula is
complicated and contains more than two or three variables. When the number
of variables is large, even a comparison of two principal disjunctive normal forms
becomes cumbersome. In Sec. 1-3.5, we describe an ordering procedure for the
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variables and a notation which make such a comparison easy. We also discuss in
Chap. 2 a computer program to obtain the sum-of-products canonical form for
a given formula.

Principal Conjunctive Normal Forms

In order to define the principal conjunctive normal form, we first define formulas
which are called maxterms. For a given number of variables, the maxterm con-
sists of disjunctions in which each variable or its negation, but not both, appears
only once. Thus the maxterms are the duals of minterms. Either from the duality
principle or directly from the truth tables, it can be ascertained that each of the
maxterms has the truth value F for exactly one combination of the truth values
of the variables. Also different maxterms have the truth value F for different
combinations of the truth values of the variables.

For a given formula, an equivalent formula consisting of conjunctions of
the maxterms only is known as its principal conjunctive normal form. This normal
form is also called the product-of-sums canonical form. Every formula which is
not a tautology has an equivalent principal conjunctive normal form which is
unique except for the rearrangement of the factors in the maxterms as well as
in their conjunctions. The method for obtaining the prineipal conjunctive normal
form for a given formula is similar to the one deseribed previously for the prin-
cipal disjunctive normal form. In fact, all the assertions made for the prineipal
disjunctive normal forms can also be made for the prineipal conjunctive normal
forms by the duality principle.

If the principal disjunctive (conjunctive) normal form of a given formula
A containing n variables is known, then the principal disjunctive (conjunctive)
normal form of T]A will consist of the disjunction (econjunction) of the remain-
ing minterms (maxterms) which do not appear in the principal disjunctive (con-
junctive) normal form of A. From A < 7]7]A one can obtain the principal con-
junctive (disjunctive) normal form of A by repeated applications of D¢ Morgan’s
laws to the principal disjunctive (conjunctive) normal form of ~14  This pro-
cedure will be illustrated by an example.

In order to determine whether two given formulas A and B are equivalent,
one can obtain any of the principal normal forms of the two formulas and com-
pare them. It is not necessary to assume that both formulas have the same vari-
ables. In fact, each formula can be assumed to depend upon all the variables that
appear in both formulas, by introducing the missing variables and then reducing
them to their principal normal forms.

EXAMPLE 1 Obtain the principal conjunctive normal form of the formula
Sgivenby (TIP—R) A (Q=P).
SOLUTION

("IP—=R) A (Q=2PF)
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= (PVR)AN((Q—P)A(P—Q))
SPVRA(TCIRVP)A(TIPVQ)
S(PVRVORATTIROVDACIRVPYV(RATIR))
A(CIPVQV (RATIR))
S(PVQVRIAPYTIQVRA(PYTIQV IR
ACIPVQVRA(TIPVQVTIR)

Now the conjunctive normal form of 7S can easily be obtained by writing
the conjunction of the remaining maxterms; thus, ~]S has the principal con-
junctive normal form

(PVQVTIR)A(CIPVTRVEYA(TIPVTIRV TIR)
By considering ~]71S, we obtain
THPVQRVTIR)VTICIPYVTIRVER)VTICIPVTIRV TIR)
S(CIPATIRARVIPAQATIR) V(PAQAR)
which is the principal disjunctive normal form of S. ////
EXAMPLE 2 The truth table for a formula A is given in Table 1-3.3. De-
termine its disjunctive and conjunctive normal forms.

soLUTION By choosing the minterms corresponding to each T value of A,
we obtain

A=(PATIRAR V(TIPAQAR)V(TIPAQA TIR)
VIIWPATIRATIR)

Similarly
A= (T1PVIRV IRRACIPYVTIRVRA(CIPVQVR)
APVQVTIR)

Here the maxterms appearing in the normal form correspond to the F values
of A. The maxterms are written down by including the variable if its truth value

is F and its negation if the value is 7. /117

Ordering and Uniqueness of Normal Forms

Given any n statement variables, let us first arrange them in some fixed order.
If capital letters are used to denote the variables, then they may be arranged
in alphabetical order. If subscripted letters are also used, then the following is
an illustration of the order that may be used:

Ay BB, 8y, ByyveaynyAnBiive
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As an example, if the variables are P;, Q, Ry, S, Ty, and Q;, then they may be
arranged as
Q’ Ph Sl) T’v Qh Rl

Once the variables have been arranged in a particular order, it is possible to
designate them as the first variable, second variable, and so on.

Let us assume that n variables are given and are arranged in a particular
order. The 2" minterms corresponding to the n variables can be designated by
me, My, ..., me~, If we write the subseript of any particular minterm in binary
and add an appropriate number of zeros on the left (if necessary) so that the
number of digits in the subscript is exactly n, then we can obtain the correspond-
ing minterm in the following manner. If in the ith location from the left there

Table 1-3.3

WA TWWNNNNS Y
mENNTTNN O
MNTNTNTS | N
NTmNNTNTTY |

wppears 1, then the ith variable appears in the conjunction. If 0 appears in the
ith location from the left, then the negation of the ith variable appears in the
conjunction forming the minterm. Thus each of mq, my, ..., my*! corresponds
to a unique minterm, which can be determined from the binary representation
of the subscript. Conversely, given any minterm, one can find which of m,
my, ..., my** designates it.

Let P, Q, and R be three variables arranged in that order. The correspond-
ing minterms are denoted by me, my, ..., m;. We can write the subsecript 5 in
binary as 101, and the minterm m; is P A ~1Q A R. Similarly me corresponds
to 1P A T1Q A TIR. To obtain the minterm m;, we write 3 as 11 and append
a zero on the left to get 011, and m;is "|P A Q A R.

If we have six variables Py, Py, ..., Pg, then there are 2¢ = 64 minterms de-
noted by me, my, ..., mg. To get & minterm, my say, we write 38 in binary as
l(l)llo;t.henthemintennmaisl’; A ij/\ —]Pal\ Pc/\ P;A 1P..

Having developed a notation for the representation of the minterms, which
can be further simplified by writing only the subscripts of me, my, ..., my*, we
designate the disjunction (sum) of minterms by the compact notation 3. Using
such a notation, the sum-of-products canonical form representing the disjunction
of m;, m;, and m, can be written down as 3}, 1,7,k. As an example, it is known that
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(PAQ V((TIPAR)VIQAR)=»(TIPA"IRAR)
VCIPAQARIVIPAQATIRIV(IPAQAR)

Thus we denote the principal disjunctive normal form of
(PAQ V(IPAR)V (QAR)

as > 1,3,6,7. With this type of representation and simplification of notation,
it is easy to compare two principal disjunctive normal forms.

We now proceed to obtain a similar representation for the product-of-sums
(principal conjunctive normal) forms. We denote the maxterms of n variables
by Mo, M;, ..., Ms*—1. Again, the maxterm corresponding to M;, say, is obtained
by writing ; in binary and appending the required number of zeros to the left
in order to get n digits. If 0 appears in the ith location from the left of this binary
number, then the ith variable appears in the disjunction, while if 1 appears in
the ith location, then the negation of the ith variable appears. Thus the binary
representation of the subscript uniquely determines the maxterm, and, con-
versely, every binary representation of numbers between 0 and 2* — 1 determines
a maxterm. Note that the convention regarding 1 and 0 here is the opposite of
what was used for minterms. This convention is adopted with a view to connect
the two principal normal forms of any given formula.

The maxterms, M,, M,, ..., M;, corresponding to three variables P, Q,
and R, are

PVQVR PVQVTIR PVTWRVR PVTIRVTIR
IPVQVR TIPVQVTIR TIPVTRVRE T/ PVTRVTIR

As before, further simplification is introduced by using ][] to denote the
conjunction (product) of maxterms. Thus ] 4,7,k represents the conjunction of
maxterms M, M;, M,.

To illustrate this discussion, we consider (P A Q) V (T1P A R). We ob-
tain its principal conjunctive normal form as follows.
(PAQ) V(TIPAR)
S ((PAQVTIP)A((PAQ VR’
S(PVTIP)AQVTIP)A(PVR)A (QVR)
*QVTIPV((RATIR) A(PVRV (QATIQ)
AQRVRV (PATIP)
SQ@VTIPVRIAQVTIPVTIR)A(PVRVQ)
APVRVTIQQAQVRVP)AQVRVTIP)
S(TIPVQVRYA(CIPVQVTIR)A(PVQVR)
APVTIRVR)
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Thus the product-of-sums canonical form of (P A Q) V (1P A R) can be
represented as J] 0,2,4,5. Note that its disjunctive normal form is

(PAQAR)YV(PAQATIR)V(IPAQAR)
V(TIPATIQAR)= I 1,367

More generally, given any formula containing n variables and using the
above notations to represent the equivalent principal disjunctive and conjunc-
tive normal forms, we see clearly that all numbers lying between 0 and 2» — 1
which do not appear in one normal form will appear in the other. This state-
ment follows from the principle of duality and the discussion given earlier re-
garding the relation between these two principal normal forms.

EXERCISES 1-3.5

1 Write equivalent forms for the following formulas in which negations are applied to
the variables only.
() TI(PVQ) (d) "UP+Q)
() "APAQ) () UPT Q)
() P—=Q) (NTNPLQ)
Obtain the principal conjunctive normal forms of (a), (¢), and (d).
2 Obtain the product-of-sums canonical forms of the following formulas.
() (PAQARV (IPARAQV (TIPATIRATIR)
®) CISATIPARAQV (SAPATIRA RV (ISAPARA TRV
QATIPATIRA )V(PATISATIRA Q)
(€@ (PAQV(IPAQVI(PATIQ)
(d (PAQV (TIPAQAR)
3 Obtain the principal disjunctive and conjunctive normal forms of the following for-
mulas.
(@ (CIPVTIQ)— (P271Q) (@ (P=QARNA(CIP=(RATIR)
® QA (PVTIQ) () P—(PA (Q—P))
() PVCIP-QV(CIR—R) (N @Q—=P)A(CIPAQ)
Which of the above formulas are tautologies?

Validity Using Truth Tables

Let A and B be two statement formulas. We say that ‘B logically follows from
A” or “B is a valid conclusion (consequence) of the premise A” if A - Bisa
tautology, that is, A = B.

Just as the definition of implication was extended to include a set of for-
mulas rather than a single formula, we say that from a set of premises |{H,,
H,, ..., Ha} a conclusion C follows logically iff

HiANH;: AN - ANHoa=C (1)
Given a set of premises and a conclusion, it is possible to determine whether

the conclusion logically follows (we shall simply say “follows”) from the given
premises by constructing truth tables as follows.
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Let Py, Py, ..., P, be all the atomic variables appearing in the premises
Hy, H,, ..., H,and the conclusion C. If all possible combinations of truth values
are assigned to Py, P, ..., P, and if the truth values of H,, H,, ..., Haand C
are entered in a table, then it is easy to see from such a table whether (1) is true.
We look for the rows in which all H,, H,, ..., H. have the value T'. If, for every
such row, C also has the value T, then (1) holds. Alternatively, we may look
for the rows in which C has the value F. If, in every such row, at least one of the
values of Hy, Hs, ..., H. 18 F, then (1) also holds. We call such a method a
“truth table technique” for the determination of the validity of a conclusion
and demonstrate this technique by examples.

EXAMPLE 1 Determine whether the conclusion € follows logically from the
premises H, and H.,.

(a) Hi: P—Q He: P C:Q

(b) Hi: P—Q Hy:."\P C:Q

(¢) H: P—-Q H::"1(PAQ) C:7\P
(d) Hi: 7P He: P=2Q C:T1(PAQ)
(e) Hi: P—-Q H,:Q C:P

soLuTioN We first construct the appropriate truth table, as shown in
Table 1.4.1. For (a) we observe that the first row is the only row in which both

Table 1-4.1

P Q P—Q P e PA Q) PEQ
T T T F F F T

T F F F T T F

F T T 1 F T F

F F v i T T T T

the premises have the value T. The conclusion also has the value T in that row.
Hence it is valid. In (b) observe the third and fourth rows. The conclusion Q is
true only in the third row, but not in the fourth, and hence the conclusion is not
valid. Similarly, we can show that the conclusions are valid in (¢) and (d) but
not in (e).

The conclusion P in (e) does not follow logically from the premises P — Q
and @, no matter which statements in English are translated as P and Q or what
the truth value of the conclusion P may be. As a particular case, consider the

argument
H,: If Canada is a country, then New York is a city.: (P — Q)
H,: New York is a city.: (Q)
Conclusion C: Canada is a country.: (P)
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Note that both the premises and the conclusion have the truth value 7. How-
ever, the conclusion does not follow logically from the premises. This example is
chosen to emphasize the fact that we are not so much concerned with the con-
clusion’s being true or false as we are with determining whether the conclusion
follows from the premises, i.e., whether the argument is valid or invalid. i

Theoretically, it is possible to determine in a finite number of steps whether
a conclusion follows from a given set of premises by constructing the appropriate
truth table. However, this method becomes tedious when the number of atomic
variables present in all the formulas representing the premises and conclusion is
large. This disadvantage, coupled with the fact that the inference theory is ap-
plicable in more general situations where the truth table technique is no longer
available, suggests that we should investigate other possible methods. This in-
vestigating will be done in the following sections.

EXERCISES 1-4.1

1 Show that the conclusion C follows from the premises H,, Hy, . . . in the following cases.

(a) Hi: P—Q C:P—(PAQ

() H: 1PV Q Hy: " (QATIR) Hy:" IR C:T|P

(¢) Hy:"|P Hy: PV Q C:Q

(d) Hi: " IQ Hy: P—Q C:T\P

(¢) H: P—Q Hy:Q—R C:P—R

(f) H:: R H:: PV T\P C:R TE
¢ Determine whether the conclusion C is valid in the following, when H;, H,, ... are

the premises.

(a) Hi: P—Q Hy: T 1Q C:P

(b) Hy: PV Q Hy:P— R HyQ—R C:R

(¢) H: P—-(Q—R) Hy:PAQ C:R

(d) H: P—-(Q—R) H:: R C: P

(e) Hy:"|P Hy: PV Q C:PAQ

8 Without constructing a truth table, show that A A E is not a valid consequence of
A2B B=2(CAD) C=2(AVE) AVE
Also show that A \/ C is not a valid consequence of
A2 (B—C) Ba(lAVTIC) C&=(AVTIB) B
4 Bhow that LV M follows from
PAQAR (Q&R)—(LVM)

& Bhow without constructing truth tables that the following statements cannot all be
true simultaneously.
(a) Pe2Q Q—R "RV 8 “\P— 8 -8
() RVM TIRVS TIM I8
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Rules of Inference

We now describe the process of derivation by which one demonstrates that a par-
ticular formula is a valid consequence of a given set of premises. Before we do
this, we give two rules of inference which are called rules P and T.

Rule P: A premise may be introduced at any point in the derivation.
Rule T: A formula S may be introduced in a derivation if S is tautologically
implied by any one or more of the preceding formulas in the derivation.

Before we proceed with the actual process of derivation, we list some im-
portant implications and equivalences that will be referred to frequently.

Not all the implications and equivalences listed in Tables 1-4.2 and 1-4.3
respectively are independent of one another. One could start with only a mini-
mum number of them and derive the others by using the above rules of inference.
Such an axiomatic approach will not be followed. We list here most of the im-
portant implications and equivalences and show how some of them are used in
a derivation. Those which are used more often than the others are given special
names because of their importance.

EXAMPLE 1 Demonstrate that R is a valid inference from the premises
P—>Q,Q—R, and P.

SOLUTION
{1} (1) P—-Q Rule P
{2} 2 P Rule P
{1,2} (3) Q Rule T, (1), (2), and I); (modus ponens)
{4} (4) Q—R RuleP
(1,2, 4) (5) R Rule T, (3), (4), and Iy

The second column of numbers designates the formula as well as the line of der-
ivation in which it occurs. The set of numbers in braces (the first column) for
each line shows the premises on which the formula in the line depends. On the
right, P or T represents the rule of inference, followed by a comment showing
from which formulas and tautology that particular formula has been obtained.
For example, if we follow this notation, the third line shows that the formula in
this line is numbered (3) and has been obtained from premises in (1) and (2).
The comment on the right says that the formula Q has been introduced using
rule T and also indicates the details of the application of rule T. /11/
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Table 1-42 IMPLICATIONS

I PA Q=P

2 PA Q= (simplification)
I P=P VQ oie

I, Qmpygq (sdition)

Is 1P=P —Q

I Q=P —Q

I (P — Q) =P
Iy WP —Q) ="
I P,Q=PAQ

Le TP,PVQ=XQ (disjunctive syllogism)
In P,P-Q=X (modus ponens)
I Q,P—-Q="1P (modus tollens)

In P—-QQ—-R=P—-R (hypothetical syllogism)

Table 1-4.3 EQUIVALENCES

E, T VPP (double negation)
E, PAQ=QAP

E (PAQARasPA QAR )

E, (PVQ VRePVQVR (associative lawa)
Ee PAQVR=(PAQVPAR o

E, PVQARe(PVQA P VR dstrbutivelaw)
Ee WPAQe PV 0 i Mmcalon)

E, WP VQ e TPA W

Ew PVPeP

Ehn PAPeP

Ewy RV(PA \P)=R

Ew RA(PV IP)=R

Ey, RV(IPVIP)eT

Esw RA(PA \P)eF

Ew P-Qe \PVQ

En MP—-Q =PA W

Ehn P—-Qe"1Q-"P

Ew P—-Q—-Re(PAQ—R
Ew P2QePm=Q

En PrQea(P-QA@Q@—P)
En P=QePAQV((IPA W
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EXAMPLE 2 Show that R V S follows logically from the premises C V D,
(CVD)—"H, |H— (A AT\B),and (A A 7IB) = (RV S).

SOLUTION
{1) (1) (CvD)—-"H P
{2] (2) “H— (A ATB) P
{1,2} 3 ((CVvD)—»(AATIB) T,(1),(2),andIn
{4} 4 (AATIB)—~(RVS) P
{1,2,4) (5) (CvD)—(RVS) T, (3), (4), and Iy
{6} (6) cCvbD P
{1,2,4,6} (7) RVS T, (5), (6), and In
The two tautologies frequently used in the above derivations are I;;, known
as hypothetical syllogism, and I;;, known as modus ponens. /1]

EXAMPLE 3 Show that S V R is tautologically implied by (P V @) A
(P—>R) A (Q—S).

BOLUTION
{1} 1 Pve P
{1} (2) “1P—Q T, (1), E;, and Ey,
{3} (3) Q—S8 P
{1, 3} 4 TWP-8 T,(2),(3)andIy
{1, 3} (5) “1IS—=P T, (4), Es and E,
{6} (6) P—-R P

{1, 3, 6} (7) “IS—R T, (5), (6), and Iy;
{1, 3, 6} 8 SVER T, (7), Ex, and E; /117

EXAMPLE 4 Show that R A (P V Q) is a valid conclusion from the premises
PVQQ—R P—M,and " |M.

SOLUTION

{1} (1) P-M P

{2} 2 "M P

(1, 2) 3) TP T, (1), (2), and I,

{4} (4) PvQ P

{1, 2,4} 5) @ T, (3), (4), and I

{6} 6) Q—R P

{1,2,4,6} (7)) R T, (5), (6), and Iy
{1,2,4,6} (8 RA((PVEQ T, (4),(7),and], /117
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EXAMPLE 5 Show Iis: "1Q,P - Q= "|P.

SOLUTION
(1) (1) P-Q P
{1 (2) "R—"1 T,(1),and Ey
{3} 3 "R P
L3 @) 7P T, (2), (3), and Iy /1]

We shall now introduce a third inference rule, known as rule CP or rule
of conditional proof.

Rule CP If we can derive S from R and a set of premises, ther we can derive
R — S from the set of premises alone.

Rule CP is not new for our purpose here because it follows from the equiv-
alence E), which states that

(PAR) =8P —(R—S)

Let P denote the conjunction of the set of premises and let R be any formula.
The above equivalence states that if R is included as an additional premise and
8 is derived from P A R, then R — S can be derived from the premises P alone.

Rule CP is also called the deduction theorem and is generally used if the
conclusion is of the form R — 8. In such cases, R is taken as an additional premise
and S is derived from the given premises and R.

EXAMPLE 6 Show that R — S can be derived from the premises F’ —
(Q—S8), IRV P, and Q.

soLUTION Instead of deriving B — 8, we shall include R as an additional
premise and show S first.

{1} (1) IRV P P

12} (2) R P (assumed premise)

(1,2 (3) P T, (1), (2),and Iy

i4] (4) P—(Q—S8) P

i1, 2, 4} (5) Q—S T, (3), (4), and Iy

16} (6) Q P

i1, 2, 4, 6} (7) S T, (5), (6), and Iy

(1,4, 6} (8) R— S CP 71/
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These examples show that a derivation consists of a sequence of formulas,
each formula in the sequence being either a premise or tautologically implied by
formulas appearing before.

In Sec. 1-3.1 we discussed the decision problem in terms of determining
whether a given formula is a tautology. We can extend this notion to the deter-
mination of validity of arguments. Accordingly, if one can determine in a finite
number of steps whether an argument is valid, then the decision problem for
validity is solvable.

One solution to the decision problem for validity is provided by the truth
table method. Use of this method is often not practical. The method of deriva-
tion just discussed provides only a partial solution to the decision problem,
because if an argument is valid, then it is possible to show by this method that
the argument is valid. On the other hand, if an argument is not valid, then it is
very difficult to decide, after a finite number of steps, that this is the case. There
are other methods of derivation which do allow one to determine, after a finite
number of steps, whether an argument is or is not valid. One such method is de-
scribed in Sec. 1-4.4, and its computer implementation is given later in See. 2-7.

We shall now give some examples of derivation involving statements in

English. We first symbolize the given statements and then use the method of
derivation just discussed.

EXAMPLE 7 “If there was a ball game, then traveling was difficult. If they
arrived on time, then traveling was not difficult. They arrived on time. There-
fore, there was no ball game.” Show that these statements constitute a valid
argument.

SOLUTION Let
P: There was a ball game.

Q: Traveling was difficult.
R: They arrived on time.

We are required to show that from the premises P — Q, R — 71Q, and R the
conclusion ~|P follows. (Complete the rest of the derivation.) 1]/

EXAMPLE 8 If A works hard, then either B or C will enjoy themselves. If
B enjoys himself, then A will not work hard. If D enjoys himself, then C will not.
Therefore, if A works hard, D will not enjoy himself.

soLuTiON Let A: A works hard; B: B will enjoy himself; C: C will enjoy
himself; D: D will enjoy himself. Show that A — 7D follows from A — B v C,
B — T)A, and D — T|C. Since the conclusion is given in the form of a condition
A — 71D, include A as an additional premise and show that 71D follows logically
from all the premises including A. Finally, use rule CP to obtain the result. ////
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UNIT -1

THE PREDICATE CALCULUS

So far our discussion of symbolic logic has been limited to the consideration of
statements and statement formulas. The inference theory was also restricted
in the sense that the premises and conclusions were all statements. The symbols
P,Q R, ... P, Q, ... were used for statements or statement variables. The
statements were taken as basic units of statement calculus, and no analysis of
any atomic statement was admitted. Only compound formulas were analyzed,
and this analysis was done by studying the forms of the compound formulas,
i.e., the connections between the constituent atomic statements. It was not
possible to express the fact that any two atomic statements have some features
in common. In order to investigate questions of this nature, we introduce the
concept of a predicate in an atomic statement. The logic based upon the analysis
of predicates in any statement is called predicate logic.

Predicates

Let us first consider the two statements

John is a bachelor.

Smith is a bachelor.

Obviously, if we express these statements by symbols, we require two different
symbols to denote them. Such symbols do not reveal the common features of
these two statements; viz., both are statements about two different individuals
who are bachelors. If we introduce some symbol to denote “is a bachelor” and
a method to join it with symbols denoting the names of individuals, then we will
have a symbolism to denote statements about any individual’s being a bachelor.
The part “is a bachelor” is called a predicate. Another consideration which leads
to some similar device for the representation of statements is suggested by the
following argument.

All human beings are mortal.
John is & human being.
Therefore, John is a mortal.

Such a conclusion seems intuitively true. However, it does not follow from the
inference theory of the statement calculus developed earlier. The reason for this
deficiency is the fact that the statement “All human beings are mortal” cannot
be analyzed to say anything about an individual. If we could separate the part
‘““are mortal” from the part “All human beings,” then it might be possible to
consider any particular human being.
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We shall symbolize a predicate by a capital letter and the names of indi-
viduals or objects in general by small letters. We shall soon se= that using capital
letters to symbolize statements as well as predicates will not lead to any con-
fusion. Every predicate describes something about one or more objects (the
word “object” is being used in a very general sense to include individuals as
well). Therefore, a statement could be written symbolically in terms of the predi-
cate letter followed by the name or names of the objects to which the predicate is
applied.

We again consider the statements

1 John is a bachelor.
2 Smith is a bachelor.

Denote the predicate “‘is a bachelor” symbolically by the predicate letter B,
“John” by j, and “Smith” by s. Then Statements (1) and (2) ean be written as
B( j) and B(s) respectively. In general, any statement of the type “p is Q"
where Q is a predicate and p is the subject can be denoted by Q(p).

A statement which is expressed by using a predicate letter must have at
least one name of an object associated with the predicate. When an appropriate
number of names are associated with a predicate, then we get a statement. Using
a capital letter to denote a predicate may not indicate the appropriate number
of names associated with it. Normally, this number is clear from the context or
from the notation being used. This numbering can also be accomplished by at-

taching a superscript to a predicate letter, indicating the number of names that
are to be appended to the letter. A predicate requiring m (m > 0) names is called
an m-place predicate. For example, B in (1) and (2) is a 1-place predicate.
Another example is that “L: is less than” is a 2-place predicate. In order to ex-
tend our definition to m = 0, we shall call a statement a O-place predicate be-
cause no names are associated with a statement.

Let R denote the predicate “is red” and let p denote ‘“This painting.” Then
the statement

8 This painting is red.

can be symbolized by R(p). Further, the connectives described earlier can now
be used to form compound statements such as “John is a bachelor, and this paint-
ing is red,” which can be written as B(j) A R(p). Other connectives can also
be used to form statements such as

B(j) — R(p) “1R(p) B(j) V R(p) ete.
Consider, now, statements involving the names of two objects, such as

4 Jack is taller than Jill.
&6 Canada is to the north of the United States.
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The predicates “‘is taller than” and “‘is to the north of"” are 2-place predicates
because names of two objects are needed to complete a statement involving
these predicates. If the letter G symbolizes “is taller than,” j, denotes “Jack,”
and j; denotes ‘“Jill,” then Statement (4) can be translated as G( ji, j:). Note
that the order in which the names appear in the statement as well as in the predi-
cate is important. Similarly, if N denotes the predicate “is to the north of,” ¢:
Canada, and s: United States, then (5) is symbolized as N (¢, s). Obviously,
N (s, ¢) is the statement ‘““The United States is to the north of Canada.”
Examples of 3-place predicates and 4-place predicates are:

6 Susan sits between Ralph and Bill.
7 Green and Miller played bridge against Johnston and Smith.

In general, an n-place predicate requires n names of objects to be inserted
in fixed positions in order to obtain a statement. The position of these names is
important. If S is an n-place predicate letter and ay, as, ..., a, are the names of
objects, then S(ay, as, ..., a.) is a statement. If we use this convention, every
predicate symbol is followed by an appropriate number of letters, which are the
names of objects, enclosed in parentheses and separated by commas. Occasionally,
the parentheses and the commas are dropped. The definition does not require
that the names be chosen from any fixed set. For example, if B denotes the predi-
cate ““is a bachelor” and ¢ denotes “This table,” then B(t) symbolizes ‘“This table
is & bachelor.” In our everyday language, the only admissible name in this con-
text would be that of an individual. However, such restrictions are not necessary
according to the rules given above. We show a method of imposing such restrie-
tions in Sec. 1-5.5.

The Statement Function, Variables, and Quantifiers

Let H be the predicate “is a mortal,” b the name ‘“Mr. Brown,” ¢ “Canada,”
and s “A shirt.” Then H(b), H(c), and H (s) all denote statements. In fact,
these statements have a common form. If we write H (z) for “z is mortal,” then
H(b), H(c), H(s), and others having the same form can be obtained from H (z)
by replacing z by an appropriate name. Note that H (z) is not a statement, but
it results in a statement when z is replaced by the name of an object. The letter
z used here is a placeholder. From now on we shall use small letters as individual
or object variables as well as names of objects,

A simple statemen! function of one variable is defined to be an expression
consisting of a predicate symbol and an individual variable. Such a statement
function becomes a statement when the variable is replaced by the name of any
object. The statement resulting from a replacement is called a substitution instance
of the statement function and is a formula of statement calculus,

The word “simple” in the above definition distinguishes the simple state-
ment function from those statement functions which are obtained from combining
one or more simple statement functions and the logical connectives. I'or example,
if we let M (z) be “z is a man” and H (z) be “z is a mortal,” then we can form
compound stalement functions such as
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M(z) AH(z) M(z)—H(z) "\H(z) M(z)V |H(z) ete

An extension of this idea to the statement functions of two or more vari-
ables is straightforward. Consider, for example, the statement function of two
variables:

1 G(z,y): zis taller than y.

If both z and y are replaced by the names of objects, we get a statement. If m
represents Mr. Miller and f Mr. Fox, then we have

G(m, f): Mr. Miller is taller than Mr. Fox.
and
G( f,m): Mr. Fox is taller than Mr. Miller.

It is possible to form statement functions of two variables by using state
ment functions of one variable. For example, given

M(z): z is a man.
H(y): yis a mortal.
then we may write

M(z) AN H(y): zis a man and y is a mortal.

It is not possible, however, to write every statement function of two vari-
ables using statement functions of one variable.

One way of obtaining statements from any statement function is to replace
the variables by the names of objects. There is another way in which statements
can be obtained. In order to understand this alternative method, we first con-
sider some familiar equations in elementary algebra.

2 z4+2=35

8 2+1=0

4 (z—=1)% (z—-13) =0

b B=1=(z-=1)%(z+1)

In algebra, it is conventional to assume that the variable z is to be replaced by
numbers (real, complex, rational, integer, etc.). In the above equations, we
would not normally consider substituting for z the name of a person or object
instead of numbers, We may state this idea by saying that the universe of the
variable z is the set of real numbers or complex numbers or integers, etc. The
restriction depends upon the problem under consideration. For example, we may
be interested in only the real solution or the positive solution in a particular case.
In Statement (2), if z is replaced by a real number, we get a statement. The
resulting statement is true when 3 is substituted for z, while, for every other sub-
stitution, the resulting statement is false. In (3) there is no real number which,
when substituted for z, gives a true statement. If, however, the universe of z
includes complex numbers as well, then we find that there are two substitution
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instances which give true statements, In (4), if the universe of z is assumed to
be integers, then there is only one number which produces a true statement when
substituted. The situation is slightly different in (5) in the sense that if any
number is substituted for z, then the resulting statement is true. Thercfore, we
may say that

6 Foranynumberz, z?—1= (z - 1) % (z + 1).

Note that (6) is a statement and not a statement function even though a vari-
able r appears in it. In fact, the addition of the phrase “For any number z,”
has changed the situation. The letter z, as used in (6), is different from the vari-
able r used in Statements (2) to (5). In (6) the variable r need not be replaced
by any name to obtain a statement. In mathematics this distinction is often not
made. Occasionally when a statement involves an equality, a distinction is made
by using the symbol = instead of the equality sign to show that it is a statement.
In this case, (6) would be written as 2 — 1 = (r — 1) % (2 + 1). A similar
situation occurs when a statement function does not involve an equality, and a
distinction is necessary in logic between these two different uses of the variables.

Let us first consider the following statements. Each one is a statement
about all individuals or objects belonging to a certain set.

7 All men are mortal.
8 Every apple is red.
9 Any integer is either positive or negative.

Let us paraphrase these in the following manner.
7a For all z, if z is a man, then z is a mortal.

8a For all z, if z is an apple, then z is red.
9a For all z, if z is a integer, then z is either positive or negative.

We have already shown how statement functions such as “z is a man,”
“z is an apple,” or “z is red”’ can b« . ritten by using predicate symbols. If we
introduce a symbol to denote the phrase “For all z,” then it would be possible to
symbolize Statements (7a), (8a), and (9a).

We symbolize “For all 2"’ by the symbol “(Vz)” or by “(z)” with an
understanding that this symbol be placed before the statement function to which
this phrase is applied. Using

M(z): x is man, H(z): z s a mortal.

A(z): zis an apple. R(z): z is red.

N(z): z is an integer. P(z): z 18 either positive or negative,
we write (7a), (8a), and (9a) as

b (z)(M(x) —H(x))
8 (z)(A(zx) — R(z))
9 (z)(N(z)—P(z))
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Sometimes (z) (M (z) — H(z)) is also written as (Vz) (M (z) — H(z)).
The symbols (z) or (V) are called universal quantifiers. Strictly speaking, the
quantification symbel is “( )” or “(V ),” and it contains the variable which is
to be quantified. It is now possible for us to quantify any statement function of
one variable to obtain a statement. Thus () M (z) is a statement which can be
translated as

10  For all z, z is a man.
10a For every z, x is a man.
10b Everything is a man,

In order to determine the truth values of any one of these statements in-
volving a universal quantifier, one may be tempted to consider the truth values
of the statement function which is quantified. This method is not possible for
two reasons. First, statement funections do not have truth values. When the vari-
ables are replaced by the names of objects, we get statements which have a truth
value. Second, in most cases there is an infinite number of statements that can
be produced by such substitutions.

Note that the particular variable appearing in the statements involving
a quantifier is not important because the statements remain unchanged if 2
is replaced by y throughout. Thus the statements (z)(M(x) — H(zx)) and
(y)(M(y) — H(y)) are equivalent.

Sometimes it is necessary to use more than one universal quantifier in a
statement. For example consider

G(z, y): z is taller than y.

We can state that “For any x and any y, if 2 is taller than y, then y is not taller
than z'" or “For any z and y, if z is taller than y, then it is not true that y is taller
than z.”” This statement can now be symbolized as

() () (G(z, y) — |Gy, x))

The universal quantifier was used to translate expressions such as “for all,”
“every,” and “for any.” Another quantifier will now be introduced to symbolize
expressions such as “for some,” “there is at least one,” or “there exists some”
(note that “some’ is used in the sense of “‘at least one’).

Consider the following statements:

11 There exists a man.
12 Some men are clever.
18 Some real numbers are rational.
The first statement can be expressed in various ways, two such ways being

11a There exists an z such that z is a man.
11b There is at least one z such that z is a man.
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Similarly, (12) can be written as

12a There exists an z such that z is a man and z is clever.
12b There exists at least one z such that r is a man and z is clever.

Such a rephrasing allows us to introduce the symbol ““( 3z),” called the existential
quantifier, which symbolizes expressions such as “there is at least one x such that”
or “‘there exists an z such that” or “for some z.”” Writing

M(x): x 18 a man,
C(z): zis clever.
Ry(z): z is & real number.
Ra(z): z is rational.
and using the existential quantifier, we can write the Statements (11) to (13) as

Ile (3z)(M(z))
12¢ (3z2)(M(z) A C(2))
18¢ (3z) (Ri(z) A Ra(a))

It may be noted that a conjunction has been used in writing the statements
of the form “Some A are B,” while a conditional was used in writing statements
of the form “All A are B."” To a beginner this usage may appear confusing. We
show in Sec. 1-5.5 why these connectives are the right ones to be used in these
cases.

Predicate Formulas

Recall that capital letters were first used to denote some definite statements,
Subsequently they were used as placeholders for the statements, and, in this
sense, they were called statement variables. These statement variables were also
considered as special cases of statement formulas.

In Secs. 1-5.1 and 1-5.2 the capital letters were introduced as definite predi-
cates. It was suggested that a superseript n be used along with the capital letters
in order to indicate that the capital letter is used as an n-place predicate. How-
ever, this notation was not necessary because an n-place predicate symbol must
be followed by n object variables. Such variables are called object or individual
variables and are denoted by lowercase letters. When used as an n-place predicate,
the capital letter is followed by n individual variables which are enclosed in
parentheses and separated by commas. For example, P(zy, 3, ..., z,) denotes
an n-place predicate formula in which the letter P is an n-place predicate and

Iy, T3, ..., X, are individual variables. In general, P(x,, 2, ..., z,) will be called
an atomic formula of predicate calculus. It may be noted that our symbolism
includes the atomic formulas of the statement calculus as special cases (n = 0).
The following are some examples of atomic formulas,

R Q@) Pz,y) A(zr,y,2) Pla,y) and A(zr,a,2)
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A well-formed formula of predicate calculus is obtained by using the following
rules.

1 An atomic formula is a well-formed formula.

2 If A is a well-formed formula, then 7|4 is a well-formed formula.

3 If A and B are well-formed formulas, then (A A B), (A V B), (A —= B),
and (A & B) are also well-formed formulas.

4 If A is a well-formed formula and z is any variable, then (z)A and
( 3z) A are well-formed formulas,

&5 Only those formulas obtained by using rules (1) to (4) are well-formed
formulas.

Since we will be concerned with only well-formed formulas, we shall use
the term “formula’ for “‘well-formed formula.” We shall follow the same con-
ventions regarding the use of parentheses as was done in the case of statement
formulas.

Free and Bound Variables

Given a formula containing a part of the form (z)P(z) or ( 3z)P(z), such a
part is called an z-bound part of the formula. Any oceurrence of z in an z-bound
part of a formula is called a bound occurrence of z, while any occurrence of r or of
any variable that is not a bound occurrence is called a free occurrence. Further,
the formula P(r) either in (z)P(z) or in ( 3x)P(z) is described as the scope
of the quantifier. In other words, the scope of a quantifier is the formula im-
mediately following the quantifier. If the scope is an atomie formula, then no
parentheses are used to enclose the formula; otherwise parentheses are needed.
As illustrations, consider the following formulas:

() P(z,y) (1)
(z) (P(x) = Q(z)) (2)
(z) (P(z) = (3y)R(z, y)) (3)
(z)(P(z) = R(2)) V (z) (P(z) = Q(z)) (4)
(3z)(P(z) A Q(2)) (5)
(3x)P(x) A Q(x) (6)

In (1), P(z, y) is the scope of the quantifier, and both occurrences of z are
bound occurrences, while the occurrence of y is a free occurrence. In (2), the
scope of the universal quantifier is P(z) — Q(z), and all occurrences of z are
bound. In (3), the scope of (z) is P(z) — ( 3y)R(z, y), while the scope of ( 3y)
is R(x, y). All occurrences of both z and y are bound occurrences. In (4), the
scope of the first quantifier is P(z) — R(z), and the scope of the second is
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P(z) — Q(z). All occurrences of z are bound occurrences. In (5), the scope of
(3z) is P(z) A Q(z). However, in (6) the scope of ( 3z) is P(z), and the last
occurrence of z in Q(z) is free.

It is useful to note that in the bound occurrence of a variable, the letter
which is used to represent the variable is not important. In fact, any other letter
can be used as a variable without affecting the formula, provided that the new
letter is not used elsewhere in the formula. Thus the formulas

(z)P(z, y) and (2)P(z, y)

are the same. Further, the bound occurrence of a variable cannot be substi-
tuted by a constant; only & free occurrence of a variable can be. For example,
(z)P(z) A Q(a) is a substitution instance of (z)P(z) A Q(y). In fact, (z)P(z) A
Q(a) can be expressed in English as ‘“‘Every z has the property P, and a has the
property Q.” A change of variables in the bound occurrence is not a substitution
instance. Sometimes it is useful to change the variables in order to avoid con-
fusion. In (6), it is better to write (y) P(y) A Q(z) instead of (2)P(z) A Q(2),
so as to separate the free and bound occurrences of variables. Occasionally,
one may come across a formula of the type (z) P(y) in which the occurrence of
y is free and the scope of (z) does not contain an z; in such a case, we have a
vacuous use of (z). Finally, it may be mentioned that in a statement every oc-
currence of a variable must be bound, and no variable should have a free oc-
currence. In the case where a free variable occurs in a formula, then we have a
statement function.

EXAMPLE 1 Let

P(z): z is a person.
F(z, y): z is the father of y.
M (z, y) : z is the mother of y.

Write the predicate ““z is the father of the mother of y.”
soLUTION In order to symbolize the predicate, we name a person called
z as the mother of y. Obviously we want to say that z is the father of z and z the

mother of y. It is assumed that such a person z exists. We symbolize the predicate
as

(32)(P(2) A F(z,2) A M(2,9)) /11
EXAMPLE 2 Symbolize the expression ‘“All the world loves a lover.”

soLuTioN First note that the quotation really means that everybody loves
a lover. Now let

P(z): z is a person.
L(z): z is a lover.
R(z,y): z loves y.
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The required expression is
(z) (P(z) = (¥) (P(y) A L(y) = R(z,¥))) /117

The Universe of Discourse

Example 2 in Sec. 1-5.4 shows that the process of symbolizing a statement in
predicate calculus can be quite complicated. However, some simplification can
be introduced by limiting the class of individuals or objects under consideration.
This limitation means that the variables which are quantified stand for only those
objects which are members of a particular set or class. Such a restricted class is
called the universe of discourse or the domain of individuals or simply the uni-
verse. If the discussion refers to human beings only, then the universe of dis-
course is the class of human beings. In elementary algebra or number theory, the
universe of discourse could be numbers (real, complex, rational, etc.).

EXAMPLE 1 Symbolize the statement ‘““All men are giants.”

soLuTioN Using
G(z): z is a giant.
M(z): z is a man.

the given statement can be symbolized as (z) (M (z) — G(z)). However, if we
restrict the variable z to the universe which is the class of men, then the state-
ment is

()G (z) /117

EXAMPLE 2 Consider the statement ““Given any positive integer, there is a
greater positive integer.” Symbolize this statement with and without using the
set of positive integers as the universe of discourse.

soLUTION Let the variables x and y be restricted to the set of positive in-
tegers. Then the above statement can be paraphrased as follows: For all z, there
exists a y such that y is greater than z. If G(z, y) is “z is greater than y,” then the
given statement is (z) ( Iy)G(y, z). If we do not impose the restriction on the
universe of discourse and if we write P(z) for “r is a positive integer,” then we

can symbolize the given statement as (z) (P(z) — () (P(y) A G(y,z))).
/177

The universe of discourse, if any, must be explicitly stated, because the
truth value of a statement depends upon it. For instance, consider the predicate
Q(z): z is less than 5.

and the statements (z)Q(z) and ( 3z)Q(z). If the universe of discourse is given
by the sets
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1 [-1,0,1,24}
2 {3,-2,78, -2}
3 |15, 20, 24)

then (z)Q(z) is true for the universe of discourse (1) and false for (2) and (3).
‘"e statement ( 3z)Q(z) is true for both (1) and (2), but false for (3).

It may be noted that there are two ways of obtaining a 0-place predicate
from an n-place predicate. The first way is to substitute names of objects from

of the predicate calculus with the understanding that the atomic variables there
stand for prime predicate formulas.

Some Valid Formulas over Finite Universes

In this and in the following section we denote predicate formulas by capital letters
such as A, B, C, - - - followed by object variables z, y, ---. Thus A(z), A(z,y),
B(y), and C(z, y, z) are examples of predicate formulas. Some clarification is
necessary at this stage. In the formula A (z), we wish to say that A is a predicate
formula in which z is one of the free variables. This variable z is of interest to
us, and we want to emphasize the dependence of A on it. For example, we may
write B(z) for (y)P(y) V Q(z).

If in & formula A (z) we replace each free occurrence of the variable z by
another variable y, then we say that y is substituted for z in the formula, and the
resulting formula is denoted by A (y). For such a substitution, the formula A (z)
must be free for y. A formula A (z) is said to be free for y if no free occurrence of
z is in the scope of the quantifiers (y) or ( 3y). If A(z) is not free for y, then it
is necessary to change the variable y, appearing as a bound variable, to another
variable before substituting y for z. If y is to be substituted, then it is usually a
good idea to make all the bound variables different from y. The following ex-
amples show what A (y) is for a given A (z).

A(z) Aly)

Plz,y) A Gy)Qy) Py A Q) or Plyy) A (32)Q(2)
S)A S(y) V()R(E) (BWA S) VR(E) or (S A Sy) V (2)R(2)

The following formulas are not free for y.

P(z,y) A (¥)Q(z, y) (v) (S(y) — S(2))

In order to substitute y in place of the variable z in these formulas, it is necessary
to first make them free for y as follows:

A(z) Aly)

Pzy A\ (2)Q(zz2) Plyy) A (2)Q(y,2)
(2)(8(z) — 8(2)) (2)(8(2) — S(y))
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If the universe of discourse is a finite set, then all possible substitutions of
the object variables can be enumerated. However, it is not possible to enumerate
all possible substitutions if the universe of discourse is infinite. We shall now give
some equivalences which hold for a finite universe. Later we show that these
equivalences also hold for an arbitrary universe.

Theory of Inference for The Predicate Calculus

The method of derivation involving predicate formulas uses the rules of inference
given for the statement calculus and also certain additional rules which are re-
quired to deal with the formulas involving quantifiers. The rules P and T, regard-
ing the introduction of a premise at any stage of derivation and the introduction
of any formula which follows logically from the formulas already introduced,
remain the same. If the conclusion is given in the form of a conditional, we shall
also use the rule of conditional proof called CP. Occasionally, we may use the
indireet method of proof in introducing the negation of the conclusion as an addi-
tional premise in order to arrive at a contradiction.

The equivalences and implications of the statement calculus can be used
in the process of derivation as before, except that the formulas involved are gen-
eralized to predicates. But these formulas do not have any quantifiers in them,
while some of the premises or the conclusion may be quantified. In order to use
the equivalences and implications, we need some rules on how to eliminate quan-
tifiers during the course of derivation. This elimination is done by rules of speci-
Jication called rules US and ES. Once the quantifiers are eliminated, the derivation
proceeds as in the case of the statement calculus, and the conclusion is reached.
It may happen that the desired conclusion is quantified. In this case, we need
rules of generalization called rules UG and EG, which can be used to attach a
quantifier.

The rules of generalization and specification follow. Here A (z) is used to
denote a formula with a free occurrence of z. A (y) denotes a formula obtained
by the substitution of y for z in A(z). Recall that for such a substitution A (z)
must be free for y.

Rule US (Universal Specification) Irom (z)A (z) one can conclude A (y).

Rule ES (Existential Specification) From ( 3z)A(z) one can conclude
A (y) provided that y is not free in any given premise and also not free in
any prior step of the derivation. These requirements can easily be met by
choosing a new variable each time ES is used. (The conditions of ES are
more restrictive than ordinarily required, but they do not affect the pos-
sibility of deriving any conclusion.)

Rule EG (Existential Generalization) From A(z) one can conclude
(3 A(y).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli



Rule UG (Universal Generalization) Irom A(z) one can conclude (y)A(y)
provided that z is not free in any of the given premises and provided that
if z is free in a prior step which resulted from use of ES, then no variables

introduced by that use of ES appear free in A (z).

We shall now show, by means of an example, how an invalid conclusion
could be arrived at if the second restriction on rule UG were not imposed. The
other restrictions on ES and UG are easy to understand.

Let D(u, v): u is divisible by v. Assume that the universe of discourse is
|15, 7, 10, 11}, so that the statement ( 3u) D(u, 5) is true because both D(5, 5)
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UNIT - IV

RELATIONS AND ORDERING

The concept of a relation is a basic concept in everyday life as well as in mathe-
matics. We have already used various relations. Associated with a relation is the
act of comparing objects which are related to one another. The ability of a com-
puter to perform different tasks based upon the result of a comparison is one of
its most important attributes which is used several times during the execution
of a typical program. In this section we first formalize the concept of a relation
and then discuss methods of representing a relation by using a matrix or its
graph. The relation matrix is useful in determining the properties of a relation
and also in representing a relation on a computer. Various basic properties of
relations are given, and certain important classes of relations are introduced.
Among these, the compatibility relation and the equivalence relation have useful
applications in the design of digital computers and other sequential machines.
Partial ordering and its associated terminology are introduced next. The material
in Chap. 4 is based upon these notions. Several relations given as examples in
this section are used throughout the book. Algorithms to determine certain prop-
erties of relations are also given.

member of each of the following sets:

Ri=RinRNR,

= [z, | @) ERXRAzZXYyZ2IAZ2+ P <INy <1}
Ry = Ran (RyURy) N~(R,n Ry)

=[] @Y ERXRAZ+PSIA(zXky21V 2<1)

A~ExyZ2l1Ay<a))
R.ﬂ R.n~R,nR..

=[N @GYERXRAZX Y2 IA~E+ P <9 AP <z
Ry = ~(RyUR;) N Ry
=@ @& e RXRA~EXky21VYE<2) A2+ <9

R, includes all points lying within the circle and the parabola and above the
hyperbola of the first quadrant. R includes all points within the circle which lie
either within the parabola or above the hyperbola of the first quadrant, but not
both, and all points within the circle and below the hyperbola in the third quad-
rant. R, includes all points lying above the hyperbola and within the parabola
in the first quadrant. R; includes all points lying within the circle and between
the hyperbolic curves but not within the parabola.
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These newly defined sets can pictorially be represented as shown in Fig.
2-3.2. The program given in Fig. 2-3.3 reads a number of coordinate points and
determines whether these peints lie in the sets R, to R;. Note that the rela-
tions R, to R; are written as predicates /’; to Py in the program.

FUNCTIONS

In this scetion we study a particular class of relations called functions. We are
primarily cencerned with discrete functions which transform a finite set into
another finite set. There are several such transformations involved in the com-
puter implementation of any program. Computer output can be considered as
a function of the input. A compiler transforms a program into a set of machine
language instructions (the objeet program). After introducing the concept of
function in general, we discuss unary and binary operations which form a class
of functions. Such operations have important applications in the study of al-
gebraic structures in Chaps. 3 and 4. Also discussed is a special class of functions
known as hashing functions that are used in organizing files on a computer, along
with other techniques associated with such organizations. A PL/1 program for
the construction of a symbol table is also given.

2-4.1 Definition and Introduction

Definition 2-4.1 lLet X and } be any two sets. A relation J from X to ¥V
is called a function if for every z ¢ X there is a unique y + Y such that

(x,y) € [

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli



Note that the definition of function requires that a relation must satisfy
two additional conditions in order to qualify as a function. The first condition
is that every z ¢ X must be related to some y € Y, that is, the domain of f must
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UNIT -V
LATTICES AS PARTIALLY ORDERED SETS
A lattice is a partially ordered set, where every pair of elements has both a unique
least upper bound and a unique greatest lower bound. This means a lattice is a ordered set
that fulfils two additional properties: it’s a “join-semilattice” and a “meet-Semilattice”. A
common example is the power set of a set, ordered by subset inclusion, where the join is the
union and the meet is the intersection.
Partially ordered sets:
A set with a relation that is reflexive, antisymmetric, and transitive.
e Reflexive: Foralla e P,a<a
e Antisymmetric: Forall a,b € P,ifa < band b < a, thena = b.
e Transitive: Forall a,b,c € P,ifa<band b < cthena < c.
Least Upper Bound (Join):
For any two elements a and b, the join (a V b) is the smallest element that is greater
than or equal to both a and b.
Greatest Lower Bound (Meet):
For any two elements a and b, the join (a A b) is the largest element that is less than
or equal to both a and b.
Definition:
A lattice in a partially ordered set (L, <) in which every pair of elements a, b € L has a

greatest lower bound and a least upper bound.

Example 1.

Let S be any set and P(S) be its power set. The partially ordered set (P(S), <) is a

lattice in which the meet and join are the same as the operations N and U respectively. In
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particular, when S has a single element, the corresponding lattice is a chain containing two
elements. When S has two and three elements, the diagrams of the corresponding lattices are

as shown below.

{a,b,c}
{a, b}

{a} {b}

{0}

{9}
Example 2.

Is the poset (z*, 1) a lattice?

Solution:

Let a and b be two positive integers. The least upper bound and greatest lower bound
of these two integers are the least common multiple and the greatest common divisor of these

integers, respectively. It follows that the poset is a lattices.

Example 3.

Let S = {a, b, c}. Draw the diagram of (P(S), ©).

Solution:

Given S = {a, b, c}

P(S) = {{a}, {b}, {c}.{a, b}, {b,c}{a,c}.{a,b,c},{}}

We know that {P(S), S} is a poset.
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Since empty set is a subset of every set is P(S), {} is a least of P(S).

Similarly, S = {a, b, c} contains all elements of P(S). (ie) an element of P(S) is a

subset of {a, b, c}.
Therefore, S is a greatest element is P(S). Since, (P(S), €) is a lattice.

Hasse Diagram:

{a,b,c}

{a, b} {b, ¢}

{a} {c}

{2}

PROPERTY 1: Let (L, <) be a lattice. For any a,b,c € L
we have ¢+a = g and a@a=a
[Idempotent law]
Proof: Let a,b,c €L, by the definition of GLB of @ and b we have
a*h < a o )
and if a<a and @ <b, then
a<axh . (11)
As a < a from (i) and (ii) we have
a*a<aanda<ag=xag
By the antisymmetric property if follows that @ = a +a

Similarly we can prove that ¢ ®a =g

PROPERTY 2. Show that the operation of meet are join on a lattice are
associative.
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Solution: To prove : (a*D) * ¢ =a * (b¥c)
Leta, b, ¢ €L by the definition we have
and

(a*D) *c <a*b

(a*D) *c ¢

By the definition of GLB of aand b, we havea* b<aand a * b <b, so by transitive property of < we
have

(a*b) *c<a

and (2*b) *c<b

As (a*b)c<band (a*b) * c<c

We see that (a*b) * c is lower bound for b and c. From the definition of b*c it follows that (a * b) * ¢ =

b*c

As (a*b)*c<aand (a*b)*c=b*c
From the definition of a * (b*c), we have
(a*b) *e<a* (b*c) ... (i)

Now a* (b*c)<aanda* (b*c)<b*c
As Db*c <b, by tansitivity a * (b*c) <b
since  a* (b*c)<a.anda* (b* *c)<b

We have a * (b¥c) < (a*b)
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As a*(b*c)<b*c<c

a* (b*c) <(a*b) *c.... (ii)

From (i) and (ii), by antisymmetric property, if follows that
a* (b*c)=(a*b) *c

Similarly, we can prove that a ® (b ®c) = (@ @b) D¢

PROPERTY 3. Show that the operation of meet and join on a lattice
are commutative law. i.e,, a*b=b+*a and a®b = b Da

Solution : Given a,b € L both a*b and b *a are GLB of a and
b. By the uniqueness of GLB of @ and b, we have a b =b *a. Similarly
a®b = b@®a holds good.

PROPERTY 4. Absorption law a* (a@®b)=a and a®(a*bh) = a
Solution : Let a,b€ L. Then a<a and a<a®b. So

a<a+*(a@a®b). On the other hand a + (a ®b) = a. By annisymmetric
property of < we have a=a* (@ ®b)

Similarly we have @ = a® (@*b) Va,bE L

Theorem 1.
Let (L, <) be a lattice in which + and @& denotes the operations of
meet and join respectively. For any 4,5 € L.
a<beasb=a<a®b=>b
Proof : First let us prove that a <b<a+*b = a
Let us assume that @ <b and also we know that ¢ = a.
a<a+b wo (X)
But, from definition of a = b, we have
a*b=<a ws (2)
Hence a =b=a+b =a [From (1) and (2)]
Next, assume that g #b = @, but it is only possible if a < b.
That isa*sb=a = a=<b
Combining these two results, we get
asb < a*b=a
To show that a = b < a @b =>b in a similar way.
From a + b = a, We have
b@(a+b) = bDa=a®@b
But b@(a»b) = b

Hence a@b=0> follows that a«b =a
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Theorem 2.

Let (L, =) be a lattice. For any a,b € L the following are equivalent.
(i) a<h, (ii) asb=a, (iii) a®@b=0>b
Proof : At first, consider (i) < (ii)

We have a = a, assume @ < b. Therefore @ < a = b. By the definition
of GLB, wec have

a«b=a
Hence by antisymmetric property, a*b =a
Assume that @ = b = a, but is only possible if
a<b =ag*b=a=a=<>h.
Combining these two results, we have a <b < a=*b=a
Similarly, a=b @« a®b = b
Alternatively, (ii) e (iii) as follows :

Assume a@*b =a, we have bD(a=b)=bDa=a @b, but by
absorption b @ (@ #*b) =b. Hence a @ b = b.
By representing similar steps, we can show thal a*b =a follows

from a®b =b.

-~ () = (i)
Hence the theorem
Theorem 3.
Let (L, <) be a lattice. For any a, b, ¢ € L, the following lncqualll_ies,
hold :

(1) Distribute Inequalitics
() aDdrc)<{a®@b)*@@c)
(i) ae(b@c)=(a*b)Dlavc)
(2) Modular Incqualitics
asceoaD(b=c)s@@h)=*c
(i) azcoas(bDc)z=(avb)Dc
Proof :
As (i) in 1, (ii) in 2 are duals of (i) in 1 and (i) in 2 respectively,
it is enough to prove (i) and (i) in 2 only.
Consider (i) m 1,
let a,b,c€ L. Asa=a@bamda<a@c
we have a s [(a D b) » (e @c)]
As hec<sb<sa®band becsc=a®eg,
we have (hec) S (u@b) = (aBc).
(a@b) = (6 ®c) is an upper bound for a and b ¢ and
hence a B (b=c) s (@Db) = (aDc).
Thus (i) in 1 is proved.
The inequality (i) in 2 is special case of (i) in 1.
If a<e¢ then e @c=¢ and from (i) in 1 we oblain
a@brc)=s(@Db)s(aDc)=(a@b)~c
which is incquality (i) in 2.

Hence the theorem.
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Theorem 4,

In a lattice (L, =), show that (i) (ash)@(csd)=s(adDe)+(b&d)
(i) (arD)@(brec)D(cra)s (a®b)»(bBc)= (c@n), Va,b,c € L
Proof : Let a,b,c € L

Then a*sbsa(or)b<as®b - (1)
arbsuscDa i (2)
a*b=bh=hb®c w (3)

Using (1), (2) and (3), we get
a-bs(aQb)-(bQQO(cQa)

Similarly bec < (@ ®b)* (b @c)*(c D a)
cr*ras(@@b)s(b@c)*(cDa)

This proves (i1)
We haww a sa@®c
b=b@d
(a*db)=(a@®c)~(bDd)
We know that csa®ec w (4)
d=bh&d A5
c0ds(a®c)-(b@8)

By (4) and (5), (a«b) @ (c*d) < (aDc) (b Dd). This proves (i)

Theorem 5.

In a lattice (L, <), prove that for a,b,c € L
() (asb)D(asc)<a+(bD(asc)
(i) (w@b)s(a®c)zadD (b (adc))
Proof : We know that a=b <ag,aec <4
S(aeh)@(avc)=aeDa = a w (1)

Also asbh <h asc<asc
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© (ag*b)@(arc)sbD(arc) w €2)
From (1) and (2), (a+b)@D(avc)Ssa*(bD(a~c))
This proves (1)
We know that a = a @b, a<a®c
e a=gra<(a@b)*(aDc)
Further b sa®b, a®csa®c
=2br(@a@c)s@@b)*(@Dc)
By Q)& (4), a®(br(@a@c))s(@@b)+» (@aDcy
This proves (ii)

Theorem 6.

In a Iattice if @ s b = c, show that
() a@b=Dbsc (ii) (a* L)@ (brc)=(a@b)*(a@c)=Db
Proof : leta<bh=¢

ash=a®b=b,asb=a

bse=>b@d=c¢c,bec=h

GSc®» a@c=c,a%c=a

La®b=b=b=¢ (1) follows
Now (aeb)@((b=c) = a®b=>)

(a@b)s(a@c)=bec=> (i) follows
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A lattice L is modular if and only if none of its sublattices is isomorphic to the pentagon lattice Nz,

Proof : Since the pentagon lattice W5 iz not modular lattice. Hence any lattice having a pentagon as a
gublattice cannot be medular.

Conversely, let (L, <) be any nonmedular lattice we shall prove there 13 a sublatiice which is isomorphic
o -.‘":-\

Ag (L, =) iz a nonmodular lattice, then there are elementz a_ b, ¢ € L such that

a<=candav(b™c) = (avh) "¢

Letu=h"¢c
x=av(bh"c)
y=b
z=lavhl "¢
v=avh

Then all the elements u, =, v, z, v are distinct, we haveu s x <=z < vandu=yv=v
(Du<ryvy=zvy=(@wmb)"c™b

= {(avk) “b) "¢

=h"c=u

Thetefore x"v=z"v=1u

fmvzovverwy=Ev(b " chvh

=avi el vh)

=avbh=v

Sothat, ww=zy=v
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